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Preface

In recent years we witnessed the real revolution in media recordings and storage.
Because of advances in electronics, computing engineering, storage manufacturing,
and networking, the market is flooded with cheap computers, mass memory, camera
phones, and electronic devices for digitizing and producing visual and audio infor-
mation. Ten years ago only a professional studio could create an audio CD or a DVD,
but today everybody can do it, using a home computer. Under threat of the digital
expansion, the entertainment, show, and education industries started changing their
business models. Tomorrow nobody will be surprised to find that a personal com-
puter has a terabyte hard disk and four gigabyte RAM. This phenomenon has made
corporate, public, and personal multimedia repositories widespread and fast growing.
Currently, there are some commercial tools for managing and searching multimedia
audio and image collections, but the need for tools to extract hidden useful knowl-
edge embedded within multimedia collections is becoming pressing and central for
many decision-making applications. The tools needed today are tools for discovering
relationships between objects or segments within images, classifying images on the
basis of their content, extracting patterns in sound, categorizing speech and music,
recognizing and tracking objects in video streams, etc.

Today data mining efforts are going beyond the databases to focusing on data
collected in fields like art, design, hypermedia, and digital media production, med-
ical multimedia data analysis and computational modeling of creativity, including
evolutionary computation. These fields use variety of data sources and structures,
interrelated by the nature of the phenomenon. As a result there is an increasing in-
terest in new techniques and tools that can detect and discover patterns that can lead
to a new knowledge in the problem domain, where the data have been collected.
There is also an increasing interest in the analysis of multimedia data generated
by different distributed applications, like collaborative virtual environments, virtual
communities, and multiagent systems. The data collected from such environments
include record of the actions in them, audio and video recordings of meetings and
collaborative sessions, variety of documents that are part of the business process, asyn-
chronous threaded discussions, transcripts from synchronous communications, and
other data records. These heterogeneous multimedia data records require sophisticated

xvii
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xviii Preface

preprocessing, synchronization, and other transformation procedures before even get-
ting to the analysis stage.

On the other hand, researchers in multimedia information systems, in the search
for techniques for improving the indexing and retrieval of multimedia information are
looking into new methods for discovering indexing information. Variety of techniques
from machine learning, statistics, databases, knowledge acquisition, data visualiza-
tion, image analysis, high performance computing, and knowledge-based systems,
have been used mainly as a research handcraft activity. The development of ontolo-
gies and vocabularies for multimedia data fosters the adoption and merging with the
Semantic Web technology. The emerging international standards for multimedia con-
tent description (MPEG-7) and multimedia resources delivery and usage (MPEG-21)
promise to expedite the progress in the field giving a uniform data representation and
the open multimedia framework.

This book is based mostly on extended and updated papers that have been pre-
sented at the two Multimedia Data Mining Workshops—MDM KDD 2003 and MDM
KDD 2004 that held in conjunction with the ACM SIGKDD Conference in Wash-
ington, DC, August 2003 and the ACM SIGKDD Conference in Seattle, WA, August
2004, respectively. The book also includes several invited surveys and papers. The
book chapters give a snapshot of research and applied activities in the multimedia
data mining.

The editors are grateful to the founders and active supporters of the Multimedia
Data Mining Workshop Series Simeon Simoff, Osmar Zaiane, and Chabane Djeraba.
We also thank the reviewers of book papers for their well-done job and organizers of
ACM SIGKDD Conferences for their support.

We thank the Springer-Verlag’s employees Wayne Wheeler, who initiated the book
project, Catherine Brett, and Frank Ganz for their help in coordinating the publication
and editorial assistance.

Chicago, IL Valery A. Petrushin
Dallas, TX Latifur Khan
January 2006
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Campus des Cézeaux 24, avenue des
Landais
F-63173 Aubiere Cedex
France
Marinette.Bouet@cust.univ-
bpclermont.fr

Stefan Brecheisen
Institute for Computer Science
University of Munich
Oettingenstr. 67, 80538 Munich,
Germany
brecheis@dbs.ifi.lmu.de

xix



P1: OTE/SPH P2: OTE
SVNY295-Petrushin October 18, 2006 15:30

xx List of Contributors

K. Selcuk Candan
Department of Computer Science and
Engineering
Arizona State University, Tempe, AZ
82857
USA
candan@asu.edu

Min Chen
Distributed Multimedia Information
System Laboratory
School of Computing & Information
Sciences
Florida International University
Miami, FL 33199
USA
mchen005@cs.fiu.edu

Shu-Ching Chen
Distributed Multimedia Information
System Laboratory
School of Computing & Information
Sciences
Florida International University
Miami, FL 33199
USA
chens@cs.fiu.edu

Charles Daniel
Pennsylvania State University –
Harrisburg
Middletown, PA 17057
USA

Marten J. den Uyl
VicarVision b.v.
Singel 160, 1015 AH
Amsterdam
The Netherlands
denuyl@vicarvision.nl

Qin Ding
Pennsylvania State University –
Harrisburg
Middletown, PA 17057

USA
qding@psu.edu

Chabane Djeraba
LIFL – UMR USTL CNRS 8022
Universite de Lille1, Bât. M3
59655 Villeneuve d’Ascq Cedex
France
djeraba@lifl.fr

Jianping Fan
Dept of Computer Science
University of North Carolina – Charlotte
Charlotte, NC 28223
USA
jfan@uncc.edu

Farshad Fotouhi
Department of Computer Science
Wayne State University
Detroit, MI 48202
USA
fotouhi@wayne.edu

Roger Gaborski
Rochester Institute of Technology
102 Lomb Memorial Drive
Rochester, NY 14623-5608
USA
rsg@cs.rit.edu

Yuli Gao
Dept of Computer Science
University of North Carolina – Charlotte
Charlotte, NC 28223
USA
ygao@uncc.edu

Anatole V. Gershman
Accenture Technology Labs
Accenture Ltd.
161 N. Clark St.
Chicago, IL 60601
USA
anatole.v.gershman@accenture.com



P1: OTE/SPH P2: OTE
SVNY295-Petrushin October 18, 2006 15:30

List of Contributors xxi

William Grosky
Department of Computer and
Information Science
University of Michigan – Dearborn
Dearborn, MI 48128
USA
wgrosky@umich.edu

Dimitrios Gunopulos
Computer Science & Engineering
Department
University of California, Riverside
Riverside, CA 92521
USA
dg@cs.ucr.edu

Amaury Hazan
Music Technology Group
Pompeu Fabra University
Ocata 1, 08003 Barcelona
Spain
ahazan@iua.upf.es

Koichi Ideno
Graduate School of Science and
Technology
Kobe University,
Nada, Kobe, 657-8501
Japan
ideno@ai.cs.scitec.kobe-u.ac.jp

Menno Israël
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1. Introduction into Multimedia Data Mining
and Knowledge Discovery

Valery A. Petrushin

Summary. This chapter briefly describes the purpose and scope of multimedia data mining

and knowledge discovery. It identifies industries that are major users or potential users of this

technology, outlines the current state of the art and directions to go, and overviews the chapters

collected in this book.

1.1 What Is Multimedia Data Mining?

The traditional definition of data mining is that it “is the process of automating
information discovery” [1], which improves decision making and gives a company
advantages on the market. Another definition is that it “is the exploration and analysis,
by automatic or semiautomatic means, of large quantities of data in order to discover
meaningful patterns and rules” [2]. It is also assumed that the discovered patterns
and rules are meaningful for business. Indeed, data mining is an applied discipline,
which grew out of the statistical pattern recognition, machine learning, and artificial
intelligence and coupled with business decision making to optimize and enhance it.
Initially, data mining techniques have been applied to structured data from databases.
The term “knowledge discovery in databases,” which is currently obsolete, reflects
this period. However, knowledge is interpretation of data meanings and knowledge
discovery goes beyond finding simple patterns and correlations in data to identifying
concepts and finding relationships. Knowledge-based modeling creates a consistent
logical picture of the world. In recent years the term “predictive analytics” has been
widely adopted in the business world [3].

On one hand growing computer power made data mining techniques affordable
by small companies, but on the other, emergence of cheap massive memory and
digital recording electronic devices, such as scanners, microphones, cameras, and
camcorders, allowed digitizing all kind of corporate, governmental, and private doc-
uments. Many companies consider these electronic documents as valuable assets and
other sources of data for data mining. For example, e-mail messages from customers
and recordings of telephonic conversations between customers and operators could
serve as valuable sources of knowledge about both customers’ needs and the qual-
ity of service. Unprecedented growing information on the World Wide Web made it

3
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an indispensable source of data for business intelligence. However, processing new
sources of semistructured (Web pages, XML documents) and unstructured (text, im-
ages, audio, and video recordings) information required new data mining methods
and tools.

Recently, two branches of data mining, text data mining and Web data mining, have
emerged [4, 5]. They have their own research agenda, communities of researchers,
and supporting companies that develop technologies and tools. Unfortunately, today
multimedia data mining is still in an embryonic state. It could be explained by im-
mature technology, high cost of storing and processing media data, and the absence
of successful stories that show the benefits and the high rate of return on investments
into multimedia data mining.

For understanding multimedia data mining in depth, let us consider its purpose
and scope. First, let us describe what kinds of data belong to the multimedia data.
According to MPEG-7 Standard [6], there are four types of multimedia data: audio
data, which includes sounds, speech, and music; image data (black-and-white and
color images); video data, which include time-aligned sequences of images; and
electronic or digital ink, which is sequences of time aligned 2D or 3D coordinates of
a stylus, a light pen, data glove sensors, or a similar device. All this data is generated
by specific kind of sensors.

Second, let us take a closer look at the term multimedia data mining. The word
multimedia assumes that several data sources of different modalities are processing
at the same time. It could be or could not be the case. A data mining project can
deal with only one modality of data, for example, customers’ audio recordings or
surveillance video. It would be better to use the term media data mining instead, but
the word media usually connotes by mass media such as radio and television, which
could be or could not be the data source for the data mining project. The term sensor
data mining extends the scope too far covering such sensors as radars, speedometers,
accelerometers, echo locators, thermometers, etc. This book is devoted to discussing
the first three media types mentioned above and we shall use the term multimedia
data mining and the acronym MDM keeping in mind the above discussion.

The MDM’s primary purpose is to process media data alone or in a combination
with other data for finding patterns useful for business. For example, analyze customer
traffic in a retail store using video recordings to find optimal location for a new product
display. Besides explicit data mining projects, the MDM techniques can be used as a
part of complex operational or manufacturing processes. For example, using images
for finding defective products or indexing a video database of company’s meetings.

The MDM is a part of multimedia technology, which covers the following areas
[7, 8]:

� Media compression and storage.
� Delivering streaming media over networks with required quality of service.
� Media restoration, transformation, and editing.
� Media indexing, summarization, search, and retrieval.
� Creating interactive multimedia systems for learning/training and creative art

production.
� Creating multimodal user interfaces.
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The major challenge that the MDM shares with the multimedia retrieval is the
so-called semantic gap, which is the difficulty of deriving a high-level concept such as
“mountain landscape” or “abnormal customer behavior” from low-level features such
as color histogram, homogeneous texture, contour-based shape, motion trajectory,
etc., that are extracted from media data. A solution of this problem requires creating
an ontology that covers different aspects of the concept and a hierarchy of recognizers
that deduce the probability of the concept from the probabilities of its components
and relationships among them.

1.2 Who Does Need Multimedia Data Mining?

To answer the above question, we consider the application areas of MDM and related
industries and companies who are (potential) users of technology. The following are
the five major application areas of MDM:

Customer Insight—Customer insight includes collecting and summarizing informa-
tion about customers’ opinions about products or services, customers’ complains,
customers’ preferences, and the level of customers’ satisfaction of products or ser-
vices. All product manufacturers and service providers are interested in customer
insight. Many companies have help desks or call centers that accept telephone
calls from the customers. These calls are recorded and stored. If an operator is not
available a customer may leave an audio message. Some organizations, such as
banks, insurance companies, and communication companies, have offices where
customers meet company’s representatives. The conversations between customers
and sales representatives can be recorded and stored. The audio data serve as an
input for data mining to pursue the following goals:
� Topic detection—The speech from recordings is separated into turns, i.e., speech

segments spoken by only one speaker. Then the turns are transcribed into text and
keywords are extracted. The keywords are used for detecting topics and estimat-
ing how much time was spent on each topic. This information aggregated by day,
week, and month gives the overview of hot topics and allows the management
to plan the future training taking into account the emerging hot topics.

� Resource assignment—Call centers have a high turn around rate and only small
percentage of experienced operators, who are a valuable resource. In case when
the call center collects messages, the problem is how to assign an operator who
will call back. To solve the problem, the system transcribes the speech and
detects the topic. Then it estimates the emotional state of the caller. If the caller
is agitated, angry, or sad, it gives the message a higher priority to be responded
by an experienced operator. Based on the topic, emotional state of the caller, and
operators’ availability the system assigns a proper operator to call back [9].

� Evaluation of quality of service—At a call center with thousands of calls per
day, the evaluation of quality of service is a laborious task. It is done by people
who listen to selected recordings and subjectively estimate the quality of service.
Speech recognition in combination with emotion recognition can be used for
automating the evaluation and making it more objective. Without going into
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deep understanding of the conversation meaning, the system assigns a score to
the conversation based on the emotional states of speakers and keywords. The
average score over conversations serves as a measure of quality of service for
each operator.

Currently, there are several small companies that provide tools and solutions
for customer management for call centers. Some tools include procedures that
are based on MDM techniques. The extension of this market is expected in the
future.

Surveillance—Surveillance consists of collecting, analyzing, and summarizing au-
dio, video, or audiovisual information about a particular area, such as battlefields,
forests, agricultural areas, highways, parking lots, buildings, workshops, malls,
retail stores, offices, homes, etc. [10]. Surveillance often is associated with intel-
ligence, security, and law enforcement, and the major uses of this technology are
military, police, and private companies that provide security services. The U.S. Gov-
ernment is supporting long-term research and development activities in this field
by conducting the Video Analysis and Content Extraction (VACE) program, which
is oriented on development technology for military and intelligence purposes. The
National Institute of Standards and Technology is conducting the annual evaluation
of content-based retrieval in video (TRECVID) since 2000 [11]. However, many
civilian companies use security services for protecting their assets and monitoring
their employees, customers, and manufacturing processes. They can get valuable
insight from mining their surveillance data. There are several goals of surveillance
data mining:
� Object or event detection/recognition—The goal is to find an object in an image

or in a sequence of images or in soundtrack that belongs to a certain class of
objects or represents a particular instance. For example, detect a military vehicle
in a satellite photo, detect a face in sequence of frames taken by a camera that
is watching an office, recognize the person whose face is detected, or recognize
whether sound represents music or speech. Another variant of the goal is to
identify the state or attributes of the object. For example, classify an X-ray image
of lungs as normal or abnormal or identify the gender of a speaker. Finally,
the goal can be rather complex for detecting or identifying an event, which is
a sequence of objects and relationships among objects. For example, detect a
goal event in a soccer game; detect violence on the street, or detect a traffic
accident. This goal is often a part of the high-level goals that are described
below.

� Summarization—The goal is to aggregate data by summarizing activities in space
and/or time. It covers summarizing activities of a particular object (for example,
drawing a trajectory of a vehicle or indicating periods of time when a speaker was
talking) or creating a “big picture” of activities that happened during some period
of time. For example, assuming that a bank has a surveillance system that includes
multiple cameras that watch tellers and ATM machines indoors and outdoors,
the goal is to summarize the activities that happened in the bank during 24 h.
To meet the goal, unsupervised learning and visualization techniques are used.
Summarization also serves as a prerequisite step to achieve another goal—find
frequent and rare events.
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� Monitoring—The goal is to detect events and generate response in real time. The
major challenges are real-time processing and generating minimum false alarms.
Examples are monitoring areas with restricted access, monitoring a public place
for threat detection, or monitoring elderly or disabled people at home.

Today we witness a real boom in video processing and video mining research
and development [12–14]. However, only a few companies provide tools that have
elements of data mining.

Media Production and Broadcasting—Proliferation of radio stations and TV channels
makes broadcasting companies to search for more efficient approaches for creating
programs and monitoring their content. The MDM techniques are used to achieve
the following goals:
� Indexing archives and creating new programs—A TV program maker uses raw

footage called rushes and clips from commercial libraries called stockshot li-
braries to create a new program. A typical “shoot-to-show” ratio for a TV pro-
gram is in the range from 20 to 40. It means that 20–40 hours of rushes go into
one hour of a TV show. Many broadcasting companies have thousands of hours
of rushes, which are poorly indexed and contain redundant, static, and low-value
episodes. Using rushes for TV programs is inefficient. However managers be-
lieve that rushes could be valuable if the MDM technology could help program
makers to extract some “generic” episodes with high potential for reuse.

� Program monitoring and plagiarism detection—A company that pays for broad-
casting its commercials is interested to know how many times the commercial
has been really aired. Some companies are also interested how many times their
logo has been viewed on TV during a sporting event. The broadcasting compa-
nies or independent third-party companies can provide such service. The other
goals are detecting plagiarism in and unlicensed broadcasting of music or video
clips. This requires using MDM techniques for audio/video clip recognition [15]
and robust object recognition [16].

Intelligent Content Service—According to Forrester Research, Inc, (Cambridge, MA)
the Intelligent Content Service (ICS) is “a semantically smart content-centric set
of software services that enhance the relationship between information workers
and computing systems by making sense of content, recognizing context, and un-
derstanding the end user’s requests for information” [17]. Currently, in spite of
many Web service providers’ efforts to extend their search services beyond basic
keyword search to ICS, it is not available for multimedia data yet. This area will be
the major battlefield among the Web search and service providers in next 5 years.
The MDM techniques can help to achieve the following goals:
� Indexing Web media and using advanced media search—It includes creating

indexes of images and audio and video clips posted on the Web using audio
and visual features; creating ontologies for concepts and events; implementing
advance search techniques, such as search images or video clips by example or
by sketch and search music by humming; using Semantic Web techniques to
infer the context and improve search [18]; and using context and user feedback
to better understand the user’s intent.

� Advanced Web-based services—Taking into account exponential growth of in-
formation on the Web such services promise to be an indispensable part of
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everybody’s everyday life. The services include summarization of events ac-
cording the user’s personal preferences, for example, summarizing a game of
the user’s favorite football or basketball team; generating a preview of a music
album or a movie; or finding relevant video clip for a news article [19].

Knowledge Management—Many companies consider their archives of documents as
a valuable asset. They spend a lot of money to maintain and provide access to their
archives to employees. Besides text documents, these archives can contain draw-
ings of designs, photos and other images, audio and video recording of meetings,
multimedia data for training, etc. The MDM approaches can provide the ICS for
supporting knowledge management of companies.

1.3 What Shall We See in the Future?

As to the future development in the multimedia data mining field, I believe that we shall
see the essential progress during the next 5 years. The major driven force behind it is
creating techniques for advanced Web search to provide intelligent content services to
companies for supporting their knowledge management and business intelligence. It
will require creating general and industry-specific ontologies, develop recognizers for
entities of these ontologies, merging probabilistic and logical inferences, and usage
of metadata and reasoning represented in different vocabularies and languages, such
as MPEG-7 [6], MPEG-21 [20, 21], Dublin Core [22], RDF [23], SKOS [24], TGM
[25], OWL [26], etc.

Another force, which is driven by funding from mostly governmental agencies, is
video surveillance and mass media analysis for improving intelligence, military, and
law enforcement decision making.

Mining audio and video recordings for customer insight and using MDM for
improving broadcasting companies’ production will also be growing and elaborating
in the future.

From the viewpoint of types of media, most advances in video processing are
exected in research and development for surveillance and broadcasting applications,
audio processing will get benefits from research for customer insight and creating
advanced search engines, and image processing will benefit from developing advanced
search engines As to electronic ink, I believe this type of multimedia data will be
accumulated and used in data mining in the future, for example, for estimating the
skills level of a user of an interactive tool or summarizing the contribution to a project
of each participant of a collaborative tool.

1.4 What Can You Find in This Book?

As any collection of creative material the chapters of the book are different in style,
topics, mathematical rigidity, level of generality, and readiness for deployment. But
altogether they build a mosaic of ongoing research in the fast changing dynamic field
of research that is the multimedia data mining.
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The book consists of five parts: The first part, which includes two chapters, gives
an introduction into multimedia data mining. Chapter 1, which you are reading now,
overviews the multimedia data mining as an industry. Chapter 2 presents an overview
of MDM techniques. It describes a typical architecture of MDM systems and covers
approaches to supervised and unsupervised concept mining and event discovery.

The second part includes five chapters. It is devoted to multimedia data exploration
and visualization. Chapter 3 deals with exploring images. It presents a clustering
method based on unsupervised neural nets and self-organizing maps, which is called
the dynamic growing self-organizing tree algorithm (DGSOT). The chapter shows
that the suggested algorithm outperforms the traditional hierarchical agglomerative
clustering algorithm.

Chapter 4 presents a multiresolution clustering of time series. It uses the Haar
wavelet transform for representing time series at different resolutions and applies k-
means clustering sequentially on each level starting from the coarsest representation.
The algorithm stops when two sequential membership assignments are equal or when
it reaches the finest representation. The advantages of the algorithm are that it works
faster and produces better clustering. The algorithm has been applied to clustering
images, using color and texture features.

Chapter 5 describes a method for unsupervised classification of events in mul-
ticamera indoors surveillance video. The self-organizing map approach has been
applied to event data for clustering and visualization. The chapter presents a tool for
browsing clustering results, which allows exploring units of the self-organizing maps
at different levels of hierarchy, clusters of units, and distances between units in 3D
space for searching for rare events.

Chapter 6 presents the density-based data analysis and similarity search. It in-
troduces a visualization technique called the reachability plot, which allows visually
exploring a data set in multiple representations and comparing multiple similarity
models. The chapter also presents a new method for automatically extracting cluster
hierarchies from a given reachability plot and describes a system prototype, which
serves for both the visual data analysis and a new way of object retrieval called
navigational similarity search.

Chapter 7 presents an approach to the exploration of variable length multiattribute
motion data captured by data glove sensors and 3-D human motion cameras. It sug-
gests using the singular value decomposition technique to regularize multiattribute
motion data of different lengths and classify them applying support vector machine
classifiers. Classification motion data using support vector machine classifiers is com-
pared with classification by related similarity measures in terms of accuracy and CPU
time.

The third part is devoted to multimedia data indexing and retrieval. It consists
of three chapters. Chapter 8 focuses on developing an image retrieval methodology,
which includes a new indexing method based on fuzzy logic, a hierarchical indexing
structure, and the corresponding hierarchical elimination-based A∗ retrieval algo-
rithm with logarithmic search complexity in the average case. It also deals with user
relevance feedbacks to tailor the semantic retrieval to each user’s individualized query
preferences.
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Chapter 9 presents a methodology that uses both clustering and characterization
rules to reduce the search space and produce a summarized view of an annotated image
database. These data mining techniques are performed separately on visual descriptors
and textual information such as annotations, keywords, etc. A visual ontology is
derived from the textual part and enriched with representative images associated to
each concept of the ontology. The ontology-based navigation is used as a user-friendly
tool for retrieving relevant images.

Chapter 10 describes a methodology and a tool for end user that allows creating
classifiers for images. The process consists of two stages: First, small image fragments
called patches are classified. Second, frequency vectors of these patch classifications
are fed into a second-level classier for global scene classification (e.g., city, portrait,
or countryside). The first-stage classifiers can be seen as a set of highly specialized
feature detectors that define a domain-specific visual alphabet. The end user builds
the second-level classifiers interactively by simply indicating positive examples of a
scene. The scene classifier approach has been successfully applied to several problem
domains, such as content-based video retrieval in television archives, automated sewer
inspection, and pornography filtering.

The fourth part is a collection of eight chapters that describe approaches to mul-
timedia data modeling and evaluation. Chapter 11 presents an approach to automatic
novelty detection in video stream and compares it experimentally to human perfor-
mance. The evaluation of human versus machine-based novelty detection is quantified
by metrics based on location of novel events, number of novel events, etc.

Chapter 12 presents an effective approach for event detection using both audio and
visual features with its application in the automatic extraction of goal events in soccer
videos. The extracted goal events can be used for high-level indexing and selective
browsing of soccer videos. The approach uses the nearest neighbor classifier with
generalization scheme. The proposed approach has been tested using soccer videos
of different styles that have been produced by different broadcasters.

Chapter 13 describes an approach for mining and automatically discovering map-
pings in hierarchical media data, metadata, and ontologies, using the structural infor-
mation inherent in hierarchical data. It uses structure-based mining of relationships,
which provides high degrees of precision. The approach works even when the map-
pings are imperfect, fuzzy, and many-to-many.

Chapter 14 proposes a new approach to high-level concept recognition in images
using the salient objects as the semantic building blocks. The novel approach uses
support vector machine techniques to achieve automatic detection of the salient ob-
jects, which serve as a basic visual vocabulary. Then a high-level concept is modeling
using the Gaussian mixture model of weighted dominant components, i.e., salient
objects. The chapter proves the efficiency of the modeling approach, using the results
of broad experiments obtained on images of nature.

Chapter 15 is devoted to a fundamental problem—image segmentation. It intro-
duces a new MPEG-7 friendly system that integrates a user’s feedback with image
segmentation and region recognition, supporting the user in the extraction of image
region semantics in highly dynamic environments. The results obtained for aerial
photos are provided and discussed.
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Chapter 16 describes techniques for query by example in an image database,
when the exemplar image can have different position and scale in the target im-
age and/or be captured by different sensor. The approach matches images against
the exemplar by comparing the local entropies in the images at corresponding
positions. It employs a search strategy that combines sampling in the space of
exemplar positions, the Fast Fourier Transform for efficiently evaluating object
translations, and iterative optimization for pose refinement. The techniques are ap-
plied to matching exemplars with real images such as aerial and ground reconnais-
sance photos. Strategies for scaling this approach to multimedia databases are also
described.

Chapter 17 presents a neural experts architecture that enables faster neural net-
works training for datasets that can be decomposed into loosely interacting sets of
attributes. It describes the expressiveness of this architecture in terms of functional
composition. The experimental results show that the proposed neural experts archi-
tecture can achieve classification performance that is statistically identical to that of a
fully connected feedforward neural networks, while significantly improving training
efficiency.

Chapter 18 describes a methodology that allows building models of expressive
music performance. The methodology consists of three stages. First, acoustic features
are extracted from recordings of both expressive and neutral musical performances.
Then, using data mining techniques a set of transformation rules is derived from per-
formance data. Finally, the rules are applied to description of inexpressive melody to
synthesize an expressive monophonic melody in MIDI or audio format. The chap-
ter describes, explores, and compares different data mining techniques for creating
expressive transformation models.

Finally, the fifth part unites seven chapters that describe case studies and appli-
cations. Chapter 19 presents a new approach for supporting design and redesign of
virtual collaborative workspaces, based on combining integrated data mining tech-
niques for refining the lower level models with a reverse engineering cycle to create
upper-level models. The methodology is based on the combination of a new model
of vertical information integration related to virtual collaboration that is called the
information pyramid of virtual collaboration.

Chapter 20 presents a time-constrained sequential pattern mining method for
extracting patterns associated with semantic events in produced videos. The video
is separated into shots and 13 streams of metadata are extracted for each shot. The
metadata not only cover such shot’s attributes as duration, low-level color, texture,
shape and motion features, and sound volume, but also advanced attributes such as
the presence of weapons in the shot and sound type, i.e., silence, speech, or music.
All metadata are represented as quantized values forming finite alphabets for each
stream. Data mining techniques are applied to stream of metadata to derive patterns
that represent semantic events.

Chapter 21 describes an approach for people localization and tracking in an office
environment using a sensor network that consists of video cameras, infrared tag
readers, a fingerprint reader, and a pan-tilt-zoom camera. The approach is based on a
Bayesian framework that uses noisy, but redundant data from multiple sensor streams
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and incorporates it with the contextual and domain knowledge. The experimental
results are presented and discussed.

Chapter 22 presents an approach that allows estimating a potential attractiveness
of a banner image based on its attributes. A banner image is an advertisement that is
designed to attract Web users to view and eventually to buy the advertised product
or service. The approach uses a Bayesian classifier to predict the level of the click-
thru rates based on the features extracted from the banner image GIF file, such as
image dimensions, color features, number of frames in an animated file, and frames’
dynamic and chromatic features. The experimental results are discussed.

Chapter 23 presents an approach that allows deriving users’ profiles from their
performance data when they are working with a video search engine. The approach
suggests a two-level model. The goal of the first level is modeling and clustering user’s
behavior on a single video sequence (an intravideo behavior). The goal of the second
level is modeling and clustering a user’s behavior on a set of video sequences (an in-
tervideo behavior). The two-phase clustering algorithm is presented and experimental
results are discussed.

Chapter 24 presents a method for an automatic identification of a person by iris
recognition. The method uses arrays of pixels extracted from a raster image of a human
iris and searches for similar patterns using the latent semantic indexing approach.
The comparison process is expedited by replacing the time consuming singular value
decomposition algorithm with the partial symmetric eigenproblem. The results of
experiments using a real biometric data collection are discussed.

Chapter 25 deals with data mining of medical images. It presents the research
results obtained for texture extraction, classification, segmentation, and retrieval of
normal soft tissues in computer tomography images of the chest and abdomen. The
chapter describes various data mining techniques, which allow identifying different
tissues in images, segmenting and indexing images, and exploring different similarity
measures for image retrieval. Experimental results for tissue segmentation, classifi-
cation and retrieval are presented.
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2. Multimedia Data Mining: An Overview

Nilesh Patel and Ishwar Sethi

Summary. Data mining has been traditionally applied to well-structured data. With the explo-

sion of multimedia data methods—videos, audios, images, and Web pages, many researchers

have felt the need for data mining methods to deal with unstructured data in recent years. This

chapter provides an overview of data mining efforts aimed at multimedia data. We identify

examples of pattern discovery models that have been addressed by different researchers and

provide an overview of such methods.

2.1 Introduction

Data mining refers to the process of finding interesting patterns in data that are not
ordinarily accessible by rudimentary queries and associated results with the objective
of using discovered patterns to improve decision making. Traditionally, data mining
has been applied to well-structured data, the kind of data that resides in large rela-
tional databases. Such data have well-defined, nonambiguous fields that lead easily to
mining. In recent years, however, multimedia data—pictures, graphics, animations,
audio, videos, and other multimodal sensory streams—have grown at a phenomenal
rate and are almost ubiquitous. As a result, not only the methods and tools to organize,
manage, and search such data have gained widespread attention but the methods and
tools to mine such data have become extremely important too because such tools can
facilitate decision making in many situations. For example, the mining of movement
patterns of customers from the video routinely collected at shopping malls can be
used to improve the layout of merchandize in stores or the layout of shops in the
mall.

The mining of multimedia data is more involved than that of traditional business
data because multimedia data are unstructured by nature. There are no well-defined
fields of data with precise and nonambiguous meaning, and the data must be processed
to arrive at fields that can provide content information about it. Such processing often
leads to nonunique results with several possible interpretations. In fact, multimedia
data are often subject to varied interpretations even by human beings. For example,
it is not uncommon to have different interpretation of an image by different experts,
for example radiologists. Another difficulty in mining of multimedia data are its

14
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heterogeneous nature. The data are often the result of outputs from various kinds of
sensor modalities with each modality needing its own way of processing. Yet another
distinguishing aspect of multimedia data is its sheer volume. All these characteristics
of multimedia data make mining it challenging and interesting.

The goal of this chapter is to survey the existing multimedia data mining meth-
ods and their applications. The organization of the chapter is as follows. In Section
2.2, we describe the basic data mining architecture for multimedia data and discuss
aspects of data mining that are specific to multimedia data. Section 2.3 provides an
overview of representative features used in multimedia data mining. It also discusses
the issues of feature fusion. Section 2.4 describes multimedia data mining efforts for
concept mining through supervised techniques. Methods for concept mining through
clustering are discussed in Section 2.5. Section 2.6 discusses concept mining through
the exploitation of contextual information. Event and feature discovery research is
addressed in Section 2.7. Finally, a summary of chapter is provided in Section 2.8.

2.2 Multimedia Data Mining Architecture

The typical data mining process consists of several stages and the overall process
is inherently interactive and iterative. The main stages of the data mining process
are (1) domain understanding; (2) data selection; (3) cleaning and preprocessing;
(4) discovering patterns; (5) interpretation; and (6) reporting and using discovered
knowledge [1]. The domain understanding stage requires learning how the results of
data-mining will be used so as to gather all relevant prior knowledge before mining.
Blind application of data-mining techniques without the requisite domain knowledge
often leads to the discovery of irrelevant or meaningless patterns. For example, while
mining sports video for a particular sport, for example, cricket, it is important to have a
good knowledge and understanding of the game to detect interesting strokes used by
batsmen.

The data selection stage requires the user to target a database or select a subset of
fields or data records to be used for data mining. A proper domain understanding at
this stage helps in the identification of useful data. This is the most time consuming
stage of the entire data-mining process for business applications; data are never clean
and in the form suitable for data mining. For multimedia data mining, this stage is
generally not an issue because the data are not in relational form and there are no
subsets of fields to choose from.

The next stage in a typical data-mining process is the preprocessing step that in-
volves integrating data from different sources and making choices about representing
or coding certain data fields that serve as inputs to the pattern discovery stage. Such
representation choices are needed because certain fields may contain data at levels
of details not considered suitable for the pattern discovery stage. The preprocessing
stage is of considerable importance in multimedia data mining, given the unstructured
nature of multimedia data.

The pattern-discovery stage is the heart of the entire data mining process. It is the
stage where the hidden patterns and trends in the data are actually uncovered. There
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are several approaches to the pattern discovery stage. These include association,
classification, clustering, regression, time-series analysis, and visualization. Each of
these approaches can be implemented through one of several competing methodolo-
gies, such as statistical data analysis, machine learning, neural networks, and pattern
recognition. It is because of the use of methodologies from several disciplines that
data mining is often viewed as a multidisciplinary field.

The interpretation stage of the data mining process is used to evaluate the quality
of discovery and its value to determine whether previous stages should be revisited or
not. Proper domain understanding is crucial at this stage to put a value on discovered
patterns. The final stage of the data mining process consists of reporting and putting
to use the discovered knowledge to generate new actions or products and services
or marketing strategies as the case may be. An example of reporting for multimedia
data mining is the scout system from IBM [2] in which the mined results are used by
coaches to design new moves.

The architecture, shown in Figure 2.1, captures the above stages of data mining in
the context of multimedia data. The broken arrows on the left in Figure 2.1 indicate
that the process is iterative. The arrows emanating from the domain knowledge block
on the right indicate domain knowledge guides in certain stages of the mining process.

Multimedia content

AudioImage Video

Feature extraction

Pattern discovery

Interpretation & reporting

Spatiotemporal segmentation
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Fig. 2.1. Multimedia data mining architecture.



P1: OTE/SPH P2: OTE

SVNY295-Petrushin September 15, 2006 9:47

2. Multimedia Data Mining: An Overview 17

The spatiotemporal segmentation step in the architecture of Figure 2.1 is necessi-
tated by the unstructured nature of multimedia data. This step breaks multimedia data
into parts that can be characterized in terms of certain attributes or features. Thus,
in conjunction with the feature extraction step, this step serves the function similar
to that of the preprocessing stage in a typical data mining process. In image data
mining, the spatiotemporal step simply involves image segmentation. Both region-
and edge-based image segmentation methods have been used at this stage in different
applications. Although many researchers tend to treat image segmentation for data
mining identical to image segmentation needed for computer vision systems, there
is an important difference between the requirements for the two segmentations. The
image segmentation for a computer vision system should be such that it can operate
without any manual intervention and it should be quantitatively accurate so as to allow
the vision system to interact with its environment. On the other hand, image segmen-
tation for most data mining applications has no requirement of interacting with its
environment. Thus, it can incorporate manual intervention and can be approximate
so as to yield features that can reasonably capture the image content. In many image
mining applications, therefore, the segmentation step often involves simple blob ex-
traction or image partitioning into fixed size rectangular blocks. With video data, the
spatiotemporal step involves breaking the video into coherent collections of frames
that can be processed for feature extraction as a single unit. This is typically done
via a shot detection algorithm wherein the successive video frames are compared to
determine discontinuity along the time axis. A number of shot detection algorithms
have been developed in the last 15 years, mostly as a way to organize video data
indexing and retrieval [3–8].

Many video mining applications deal with raw or unedited video data, for exam-
ple, in surveillance and traffic monitoring, as opposed to edited video data typical
of entertainment and broadcast video. In such situations, no shot detection type of
operation is needed and the unedited video is directly processed to locate events
of interests. With audio data, the spatiotemporal step is essentially a temporal step
wherein the audio data are segmented either at the phoneme or word level or the data
are broken into windows of fixed size.

The pattern discovery step in the multimedia data mining architecture of Figure 2.1
is not much different from mining of traditional and scientific data. Depending on
the goal of the discovery stage, the methods for association, classification, clustering,
regression, time-series analysis, and visualization are used at this stage. While tra-
ditional methods such as decision tree classifier, k-nearest neighbor classifier, k-means

clustering, self-organizing feature map (SOFM) continue to be used for pattern dis-
covery in multimedia data, support vector machines (SVMs) have been used widely in
recent data mining applications [9,10]. The SVM is primarily a classifier method that
supports both regression and classification tasks and can handle multiple continuous
and categorical variables. The SVM finds a solution by mapping the original data to
a high-dimensional space where a hyperplane to separate two classes of data can be
found. The solution hyperplane is obtained by maximizing the margin of separation
between two classes of data in the mapped space. In the standard SVM formulation,
the optimal hyperplane is found by solving a quadratic optimization problem. Since



P1: OTE/SPH P2: OTE

SVNY295-Petrushin September 15, 2006 9:47

18 Nilesh Patel and Ishwar Sethi

SVM optimization problem grows dramatically with increasing number of training
examples, several variations toward using SVMs have been suggested. One such vari-
ation is known as chunking in which the SVM is trained iteratively with chunks of
training cases selected through some scheme. One popular scheme for selecting new
training cases is based on active learning [11] in which the new training examples
are selected through a query function. Such methods have been shown to reduce the
overall training time and training set size without sacrificing predictive accuracy.

Examples of pattern discovery models addressed widely in the multimedia data
mining community are mining concepts or automatic annotation of multimedia data
and discovering events and features. Most multimedia data mining efforts to date
have been devoted to the concept mining problem. The reason for such a multitude
of efforts lies in the semantic gap that users of content-based multimedia information
retrieval experience while searching for information through queries such as “find
images containing multistory buildings” or “find me a picture of Tajmahal.”1 Dealing
with such queries requires providing a retrieval system external knowledge either
through manual annotation or through automatic discovering of concepts with or
without external supervision. Although manual annotation can be more accurate, it is
not practical with ever-increasing multimedia data. Thus, the preferred approach for
bridging the semantic gap is to automatically mine concepts or key word associations.

2.3 Representative Features for Mining

Color, edges, shape, and texture are the common image attributes that are used to
extract features for mining. Feature extraction based on these attributes may be per-
formed at the global or local level. For example, color histogram of an image may be
obtained at a global level or several localized histograms may be used as features to
characterize the spatial distribution of color in an image. Similarly, the shape of a seg-
mented region may be represented as a feature vector of Fourier descriptors to capture
global shape property of the segmented region or a shape could be described in terms
of salient points or segments to provide localized descriptions. There are obvious
trade-offs between global and local descriptors. Global descriptors are generally easy
to compute, provide a compact representation, and are less prone to segmentation
errors. However, such descriptors may fail to uncover subtle patterns or changes in
shape because global descriptors tend to integrate the underlying information. Local
descriptors, on the other hand, tend to generate more elaborate representation and can
yield useful results even when part of the underlying attribute, for example, the shape
of a region is occluded, is missing. In the case of video, additional attributes resulting
from object and camera motion are used.

In the case of audio, both the temporal and the spectral domain features have
been employed. Examples of some of the features used include short-time en-
ergy, pause rate, zero-crossing rate, normalized harmonicity, fundamental frequency,

1 Tajmahal is a famous 15th-century monument in Agra, Uttar Pradesh, India.
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frequency spectrum, bandwidth, spectral centroid, spectral roll-off frequency, and
band energy ratio. Many researchers have found the cepstral-based features, mel-
frequency cepstral coefficients (MFCC), and linear predictive coefficients (LPC),
very useful, especially in mining tasks involving speech recognition. While many
researchers in this field place considerable emphasis on later processing, Scheirer
and Slaney [12] conclude that the topology of the feature space is rather simple, and
thus, there is very little difference between the performances of different classifiers.
In many cases, the selection of features is actually more critical to the classification
performance. In [13], a total of 143 classification features for the problem of general
audio data classification are examined to show that cepstral-based features such as
the MFCC and LPC provide better classification accuracy than temporal and spectral
features.

The MPEG-7 standard provides a good representative set of features for multi-
media data. The features are referred as descriptors in MPEG-7. The MPEG-7 Visual
description tools describe visual data such as images and videos while the Audio
description tools account for audio data. A brief description of audiovisual features in
the MPEG-7 standard is given here; more details can be found in [14]. The MPEG-7
visual description defines the following main features for color attributes: Color Lay-
out Descriptor, Color Structure Descriptor, Dominant Color Descriptor, and Scalable
Color Descriptor. The Color Layout Descriptor is a compact and resolution invariant
descriptor that is defined in YCbCr color space to capture the spatial distribution of
color over major image regions. The Color Structure Descriptor captures both color
content and information about its spatial arrangement using a structuring element that
is moved over the image. The Dominant Color Descriptor characterizes an image or
an arbitrarily shaped region by a small number of representative colors. The Scal-
able Color Descriptor is a color histogram in the HSV Color Space encoded by Haar
transform to yield a scalable representation. While the above features are defined with
respect to an image or its part, the feature Group of Frames-Group of Pictures Color
(GoFGoPColor) describes the color histogram aggregated over multiple frames of a
video.

The texture descriptors in MPEG-7 are the Edge Histogram Descriptor, Homoge-
nous Texture Descriptor, and Texture Browsing Descriptor. The Edge Histogram
Descriptor captures the spatial distribution of edges by dividing the image in 16
nonoverlapping regions. Four directions of edges (0, 45, 90, 135) are detected in
addition to nondirectional ones leading to an 80-dimensional vector. The Homoge-
neous Texture Descriptor captures texture information in a 30-dimensional vector that
denotes the energy of 30 spatial-frequency channels computed using Gabor filters.
The channels are defined by partitioning the frequency space in angular direction at
30 and by octave division in the radial direction. The Texture Browsing Descriptor is
a very compact descriptor that characterizes texture in terms of regularity, coarseness,
and directionality.

MPEG-7 provides for two main shape descriptors; others are based on these and
additional semantic information. The Region Shape Descriptor describes the shape
of a region using Angular Radial Transform (ART). The description is provided in
terms of 40 coefficients and is suitable for complex objects consisting of multiple
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disconnected regions and for simple objects with or without holes. The Contour
Shape Descriptor describes the shape of an object based on its outline. The descriptor
uses the curvature scale space representation of the contour.

The motion descriptors in MPEG-7 are defined to cover a broad range of ap-
plications. The Motion Activity Descriptor captures the intuitive notion of intensity
or pace of action in a video clip. The descriptor provides information for inten-
sity, direction, and spatial and temporal distribution of activity in a video segment.
The spatial distribution of activity indicates whether the activity is spatially lim-
ited or not. Similarly, the temporal distribution of activity indicates how the level
of activity varies over the entire segment. The Camera Motion Descriptor speci-
fies the camera motion types and their quantitative characterization over the entire
video segment. The Motion Trajectory Descriptor describes motion trajectory of a
moving object based on spatiotemporal localization of trajectory points. The de-
scription provided is at a fairly high level as each moving object is indicated by
one representative point at any time instant. The Parametric Motion Descriptor de-
scribes motion, global and object motion, in a video segment by describing the evo-
lution of arbitrarily shaped regions over time using a two-dimensional geometric
transform.

The MPEG-7 Audio standard defines two sets of audio descriptors. The first set
is of low-level features, which are meant for a wide range of applications. The de-
scriptors in this set include Silence, Power, Spectrum, and Harmonicity. The Silence
Descriptor simply indicates that there is no significant sound in the audio segment.
The Power Descriptor measures temporally smoothed instantaneous signal power.
The Spectrum Descriptor captures properties such as the audio spectrum envelope,
spectrum centroid, spectrum spread, spectrum flatness, and fundamental frequency.
The second set of audio descriptors is of high-level features, which are meant for
specific applications. The features in this set include Audio Signature, Timbre, and
Melody. The Signature Descriptor is designed to generate a unique identifier for iden-
tifying audio content. The Timbre Descriptor captures perceptual features of instru-
ment sound. The Melody Descriptor captures monophonic melodic information and
is useful for matching of melodies. In addition, the high-level descriptors in MPEG-7
Audio include descriptors for automatic speech recognition, sound classification, and
indexing.

A number of studies have been reported in recent literature concerning the perfor-
mance of MPEG-7 descriptors for a variety of applications. For example, the MPEG-7
shape features have been used to recognize human body posture [15], the defect types
in defect images [16], and Zhang and Lu [17] report a comparative study of MPEG-7
shape descriptors and conclude that while both the contour-based curvature scale-
space descriptor (CSSD) and the region-based Zernike-moments descriptors perform
well for image retrieval, the Fourier descriptors outperform CSSD. In another study,
Eidenberger [18] has shown that most MPEG-7 descriptors are highly redundant and
sensitive to color shades. Overall, the studies demonstrate that MPEG-7 descriptors
are outperformed in several applications by other features. This is not surprising
because these descriptors were established to optimize the browsing and retrieval
applications of multimedia.
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2.3.1 Feature Fusion

An important issue with features extracted from multimedia data is how the features
should be integrated for mining and other applications. Most multimedia analysis is
usually performed separately on each modality, and the results are brought together at
a later stage to arrive at final decision about the input data. This approach is called late
fusion or decision-level fusion. Although this is a simpler approach, we lose valuable
information about the multimedia events or objects present in the data because, by
processing separately, we discard the inherent associations between different modal-
ities. A series of psychological experiments has shown the importance of synergistic
integration of multiple modalities in the human perception system. A typical example
of such experiments is the well-known McGurk effect [19]. The other approach for
combining features is to represent features from all modalities together as components
of a high-dimensional vector for further processing. This approach is known as early
fusion. The data mining through this approach is known as cross-modal analysis
because such an approach allows the discovery of semantic associations between
different modalities [20].

2.4 Supervised Concept Mining

The concept mining in multimedia is also referred to as automatic annotation or
annotation mining. There appears to be three main pattern discovery approaches that
have been used for automatic annotation in multimedia data mining. These approaches
primarily differ in terms of how external knowledge is provided to mine concepts.
In the first approach, an annotator who assigns single or multiple concepts or key
words to each multimedia document or its parts provides the external knowledge.
This can be viewed as a supervised learning approach. The second approach for
automatic annotation is through unsupervised learning or clustering. In this approach,
multimedia documents are clustered first and then the resulting clusters are assigned
key words by an annotator. Through cluster profiling, rules are next extracted for
annotating future documents. The third approach does not rely on manual annotator
at all; instead, it tries to mine concepts by looking at the contextual information, for
example, the text surrounding an image or the closed caption text of a video. The
supervised approach is discussed here; the other two approaches are discussed in the
following sections.

Within the supervised framework of automatic annotation, three data mining meth-
ods have been used. These are annotation by classification; annotation by association;
and annotation by statistical modeling.

2.4.1 Annotation by Classification

Annotation by classification has attracted the most attention, especially for annotating
images. The methods for image classification for assigning key words generally differ
from traditional object recognition methods in that these methods tend to perform
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recognition and classification with little or no segmentation chiefly relying on low-
level image features to perform the task. An early example of this is the work of
Yu and Wolf [21], who used one-dimensional Hidden-Markov Model (HMM) for
classifying images and videos as indoor–outdoor scenes. Some other examples of
image classification methods for assigning key words include the works by Vailaya
et al. [22], Sethi et al. [23], and Blume and Ballard [24]. Vailaya et al. use a Bayesian
framework for classification of outdoor images wherein the images are first divided
into the categories of city and landscape images with landscape images being further
subdivided into sunset, forests, and mountain classes. Their method relies on features
derived from color and edge orientation histograms. Sethi, Coman, and Stan [23] use
a decision-tree learning scheme to generate classification rules that link the spatial
arrangement of colors to predict associated key words. The spatial layout of color in
each image is represented by dividing each image into 64 blocks and by calculating
the dominant color for each block. The color space used by them is the HSV color
space. Their approach generates rules like If image blocks in the upper half have more
than 50% pixels with hue values between 0 and 25, have less than 14% of pixels with
hue values between 25 and 41, and have more than 26% of pixels with saturation
values between 80 and 100, then the image is considered a sunset image with an
estimated accuracy of 90%.

Several researchers have relied on vector quantization to perform annotation by
classification. Blume and Ballard, for example, use a learning vector quantization-
based classifier to classify each and every pixel after using Haar wavelet transform
to generate a feature vector for every image pixel to capture information about the
local brightness, color, and texture. The classified pixels are then grouped into anno-
tated image regions. Blume and Ballard have demonstrated their method to annotate
regions with key words such as sky, forest, and water. Another example of vector-
quantization-based classification to predict classification categories is the work done
by Mustafa and Sethi [25]. In their approach, a concept-specific codebook is built
for each concept using images representing that concept. For example, images rep-
resenting the concept fire are used to build a codebook for fire. Similarly, images
representing water are used to build a water-specific codebook. The codebooks are
built by using subimages of a certain size. In order to use the codebooks thus built
for identifying different concepts in unseen images, every codeword is associated
with its own dissimilarity measure that defines whether a particular codeword from
a particular concept codebook is sufficiently similar to a block of image pixels in
an image being annotated. If a number of codewords from a specific codebook are
found similar to image blocks for a given image, then that image is assigned the
concept associated with the codebook providing the majority of similar codewords.
The approach has been applied to annotate images with three different kinds of fires,
sky, water, and grass, demonstrating that the codebook-based approach is suitable for
images whose category can be identified through low-level features such as color.
Such features are primary identifiers of what Biederman [26] calls as mass noun en-
tities such as grass, water, and snow. These entities do not have definite boundaries
as opposed to count noun entities, for example airplanes, with concrete boundaries.
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Images with count noun entities cannot be categorized without using shape-based
features.

2.4.2 Annotation by Association

Annotation by association methodology is a direct extension of the traditional asso-
ciation rule mining that was developed to mine patterns of associations in transaction
databases. Each transaction involves certain items from a set of possible items. Given
N transaction and d as the size of the set of possible items, the collection of trans-
actions can be represented as a size N × d matrix. Since each transaction involves
only very few items, the transaction matrix is very sparse. Association mining tries
to discover frequent itemsets, that is, the items that appear together frequently in the
transaction matrix, in the form of rules wherein the presence of a particular item in
a transaction predicts the likely presence of some other items. A typical rule has the
form X ⇒ Y with support s and confidence c, implying that s% of the transactions
contain both X and Y and c% of the transactions that support X also support Y .

Different methods for annotation by association mining differ in terms of how
items and transactions are defined to take advantage of existing association rule mining
algorithms, for example the well-known Apriori algorithm [27]. An early example
of applying association rule mining for image annotation is provided by the work
of Ordonez and Omiecinski [28], who consider segmented images to compute the
co-occurrences of regions that are deemed similar. The regions are treated as items,
and each image constitutes an equivalent of a transaction to extract association rules
of the form, “The presence of regions X and Y imply the presence of region Z with
support s and confidence c.” Ding et al. [29] follow a different strategy to define
items and transactions in their work with mining remotely sensed imagery. They
divide spectral bands into several small windows, and each window is considered an
item. The pixels in their equivalency constitute transactions. Their rule extraction also
considers auxiliary information, such as crop yield, at each pixel location to produce
rules of the form, “A window in band 1 at [a1, b1] and a window in band 2 at [a2, b2]
results in crop yield y with support s and confidence c.” The problem with pixel-level
association rules is that pixel-level information is susceptible to noise and furthermore
pixels are highly correlated in spatial directions and thus the transactions cannot be
considered independent. Tesic et al. [30] present a similar approach to derive the
equivalent of the transaction matrix for images. First, the images are partitioned into
fixed size rectangular regions. By operating at block level, their method is better at
dealing with noise and transaction independence. MPEG-7 textual descriptors are then
extracted for each region. A previously constructed learning vector quantizer-based
codebook, serving as a visual thesaurus, then provides labels for image regions. The
labeled regions are then treated as analogous to items in a transaction database and
their first- and second-order spatial co-occurrences are tabulated next. An adaptation
of the Apriori algorithm is then used to extract association rules. The method has
been used to mine aerial video-graphic images with good success. Another example
of annotation by association is the work of Teredesai et al. [31], who use multirelational
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rule mining to allow for multiple descriptions for each image arising from multiple
sources of labeling.

2.4.3 Annotation by Statistical Modeling

In this approach, a collection of annotated images is used to build models for joint
distribution of probabilities that link image features and key words. An early example
of this approach is the work of Mori et al. [32], who used a simple co-occurrence
model to establish links between words and partitioned image regions. Recently, this
approach has started receiving more attention. In the linguistic indexing approach
of Li and Wang [33], the two-dimensional multiresolution hidden Markov model
(2DMHMM) is used to build a stochastic model for each image category. The 2D
MHMM captures statistical properties of feature vectors and their spatial dependence
at different levels. The model assumes a first-order Markov chain across the reso-
lutions to define statistical dependencies at different resolutions. The model further
assumes that given a block’s state, that is, image category label, at any resolution, the
corresponding feature vector of the block is conditionally independent of any other
states and blocks. This allows the chain rule to be used to compute associated prob-
abilities from training images. Feature extraction is done by partitioning each image
into blocks of suitable size, and a six-dimensional feature vector is extracted for each
block. The feature vector consists of three components that carry color information
of the block and three components that carry texture information. The process of
feature extraction is performed at multiple levels for each image giving rise to fea-
ture vectors of the same dimensionality that capture information at different levels of
details. Li and Wang report modeling of 600 concepts, using an annotated database
of 60,000 images. The capability to model such a large number of concepts is one of
the strengths of this approach.

Barnard et al. [34] have studied two classes of stochastic models to link images
with words. Their approach requires images to be segmented into regions unlike Li
and Wang’s approach of fixed partitioning. The eight largest regions from each image
are selected and a 40-dimensional feature vector, capturing size, shape, color, and
texture information, is computed for each region. Figure 2.2 shows one of the models
studied by Barnard et al. In this hierarchical model, each node captures relationships
between regions and concepts. Higher level nodes capture relationships for key words
that are present in many images while nodes at progressively lower levels capture key
words that are specific to fewer images. A Gaussian distribution for regions and a
multinomial distribution for key words model the joint distribution for probabilities
at each node. The results shown by Barnard et al. demonstrate that the models, such
as the hierarchical model of Figure 2.2, are able to generate annotation for unseen
images; however, the performance depends heavily on the quality of segmentation
and manual labeling during training.

Another recent work in this area is due to Jeon et al. [35], who use the relevance-
based language models [36, 37] to perform automatic annotation. They assume that
every image can be described using a small vocabulary of blobs. The joint distribution
of words and blobs is learned using a training set of annotated images to form a model
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Fig. 2.2. A hierarchical model for joint modeling of regions and key words (adopted from

Barnard et al. [34]).

that they call as the cross-media relevance model (CMRM) for images. The CMRM
is then used to generate word probabilities for each blob in the test set, which are then
combined to build a vector of word probabilities for each image. By keeping the top
few probabilities, their approach is then able to generate a few key words for each
unseen image.

2.5 Concept Mining Through Clustering

Clustering is another popular data mining methodology that several researchers have
used to uncover relationships between key words and images. Clustering-based an-
notation has been performed at the image level, at the subimage level, and at the
region-level after segmentation.

An example of annotation through clustering at the image level is the work of
Stan and Sethi [38]. The interesting aspect of this work is cluster profiling in a lower
dimensional feature space or in a subspace of the original feature space. Figure 2.3
shows the conceptual architecture of their system to discover relationships between
low-level features and key words. Low-level image features such as dominant image
colors and their spatial layout are first computed for annotated images. The resulting
vectors are next clustered using a hierarchical clustering scheme that allows an easier
control over the number of resulting clusters as well as the use of an arbitrary similarity
measure. Each of the resulting clusters is analyzed to find the components of the feature
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Fig. 2.3. Conceptual architecture for concept mining through clustering (taken from Stan and

Sethi [23]).

space that are important for that particular cluster, that is, its own subspace. This is
done by ranking features for each cluster in terms of their variance. Features showing
variance less than a certain cutoff value are considered important for the corresponding
cluster and are retained to specify the subspace for the corresponding cluster. It is this
subspace wherein the cluster prototype description is generated. Such a description
consists of mean feature values for each subspace feature and the corresponding
variances that determine the region of influence for the cluster. Assuming the existence
of associated key words for images clustered, key words associated with images in
each cluster are next counted and ranked. Only the most frequent key words are
then retained to generate mining rules in IF-THEN form. The approach has been
applied to generate rules for concepts such as sunset, landscape, and arid, using
color features only. Stan and Sethi [39], in a related work, present another approach
for discovering the relationships. In this approach, clusters are visualized through
multidimensional scaling in two dimensions. Through visualization, thumbnails of
images in a cluster or cluster prototypes are displayed to an annotator who can select
a cluster or images close to the cluster prototype for annotation and assign key words
as shown in Figure 2.4. Being interactive, the approach offers a compromise between
the two extremes of annotation, manual and fully automatic.

While the above examples of work dealt with annotation at image level, doing
clustering at subimage level provides better flexibility for annotation because differ-
ent subimages may represent different concepts. An approach for clustering-based
annotation at the subimage level is presented by Mori et al. [32]. In their approach,
subimages are clustered through vector quantization to generate codewords. Each im-
age is allowed to be associated with multiple concepts, for example an outdoor image
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Fig. 2.4. Interactive annotation through multidimensional scaling of cluster centers (taken from

Stan and Sethi [39]).

may have mountains, sky, and lake associated with it. All subimages inherit multiple
concepts associated with the parent image. Once the codebook is constructed, inher-
ited concepts for each codeword are used to set up voting probabilities for different
concepts given an image. The experimental results presented in [32] indicate that the
method is suitable for linking pictures and words; however, the performance could be
improved by restricting the domain of pictures and concepts. This is not surprising
given that human beings use a great deal of external knowledge in describing the
content of an image.

2.6 Concept Mining Using Contextual Information

The text associated with images, for example, in the form of an image caption or the
text accompanying an image on a Web page, forms a rich source of external knowledge
that can be used to derive semantic links for image features. In a video, the analysis
of accompanying audio or closed caption text can yield invaluable information to link
visual or audio features with semantic concepts. In all of the examples cited here,
contextual information thus available minimizes or rather eliminates the need for an
external annotator.

Srihari describes one of the early examples of how text associated with pictures
can be used to facilitate image retrieval [40]. Although the work is limited to associ-
ating names with faces, it provides an effective example of using external knowledge
sources to do annotation. Many methods seeking to link external knowledge sources
with images or their features rely on latent semantic indexing (LSI), a popular and
powerful technique for text retrieval that has shown to be capable of learning “hidden
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associations” between the terms of text documents in the vector model of information
retrieval [41, 42]. The LSI approach is based on the singular value decomposition
(SVD) method of statistical analysis and is similar to principal component analysis
(PCA). The major difference between the two is that the SVD method is applicable
when we have a single set of observations and the PCA method applies when we have
multiple sets of observations.

The use of LSI for text retrieval involves first forming a term-document matrix.
Such a matrix is obtained by first doing preprocessing of the documents to filter out
the stop words and convert the remaining words to their root form through stemming.
After that, the term weighs for each document are calculated to obtain a vector rep-
resentation for each document. These vectors then define the term-document matrix,
where rows represent the terms and each column represents a document. The singular
value decomposition of the term-document matrix then is used to determine a new
representation. In the new vector space, each axis corresponds to a “concept” which is
related with the terms. It is this relationship that shows similarities between different
terms. The previous work [43] in this area has exploited these similarities by apply-
ing LSI methodology to bilingual documents, for example in French and English, to
determine the associations between French and English words.

There are a few different ways in which LSI has been used to mine concepts
in images. In one of the early works involving LSI and image retrieval [44], LSI is
used only on text accompanying images to find several concepts that might relate to
an image. Although the approach is able to improve retrieval accuracy, no explicit
associations between image features and key words are discovered. Consequently,
the approach has a limited use. Zhao and Grosky [45] suggest a better approach to
exploit LSI. In their approach, the text surrounding an image is processed first to
generate a vector representation for the surrounding text. Next, the associated image
is processed to extract its low-level features to generate a feature vector representation
for the image. A composite vector consisting of appended text and image vectors is
then used to represent each image and its surrounding text. These composite vectors
then form the columns of the term-document matrix of the LSI approach and the
image features and key words of the surrounding text form the terms. The results
presented by Zhao and Grosky using 43 different concepts taken from news headlines
show that LSI is able to capture relationships between key words and image features.

Instead of using LSI for mining concepts that link key words with visual features,
Stan and Sethi [46] have used it to mine associations between different features
themselves. Using the bins of a global color histogram as terms, they form the term-
document matrix for a collection of images where the global color histogram of each
image constitutes its vector representation. By experimenting with 2000 images and
a quantized histogram of 192 bins, they have shown that LSI can uncover patterns of
color that tend to occur together. These color patterns then can be assigned semantic
meanings through supervision.

The other approach to generate concepts for association with images is to perform
analysis of the audio and closed captions associated with video. For example, a number
of methods for audio classification have been developed that assign audio segments
one of the predetermined labels [47–49]. In the case of audio only, the automatic
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speech recognition can be performed on segments classified as speech. By analyzing
closed captions where available, it is also possible to generate a list of key words
that can be associated with a video clip. The key words thus generated from either
audio classification or closed captions or both can be used to perform the function of
contextual knowledge with LSI to mine concepts for automatic annotation. Kulesh
et al. present an approach [50] along these lines in their PERSEUS project where the
contextual information from different sources is exploited to track news stories on
the Internet for the creation of a personal news portal.

While most work on association mining in multimedia has typically focused on
linking multimedia features with key words or captions, recently several researchers
have been studying the mining of cues to semantically link different modalities. An
example of such a cross-modal association is provided by the work of Li et al. [51]
in which three different approaches for cross-modal association are implemented
and compared. The three approaches are latent semantic indexing (LSI), cross-modal
factor analysis (CFA), and cross-modal canonical correlation analysis (CCA). In the
LSI model of cross-modal association discovery, a composite feature vector carrying
information from two or more modalities is formed and subjected to singular-value-
decomposition to obtain associations. A drawback of this approach as noted by Li
et al. is that LSI does not distinguish features from different modalities in the joint
space. The set of linear transformations from LSI provide an optimal fit of the over-
all distribution of different features. However, the optimal solution based on overall
distribution may not best represent semantic relationships between features of dif-
ferent modalities, since distribution patterns among features from the same modality
will also greatly impact LSI’s results. A solution to the above problem is possible by
treating features from different modalities as two subsets and focus only on semantic
patterns between these two subsets. Under the linear correlation model, the problem
becomes one of finding the optimal transformations that can best identify the coupled
patterns or the semantic structure between features of two different subsets. Two such
transformations are possible through the multivariate statistical analysis methods of
factor analysis and canonical correlation analysis. The experimental results presented
by Li et al. show that CFA yields the best cross-modal association results. Although
CCA follows the same approach of treating different modalities as two subsets, its
performance is impacted because associations are more susceptible to noise or small
variations in features.

2.7 Events and Feature Discovery

An event in multimedia literature implies an occurrence of an interesting action, for
example a car chase. While it is common to characterize an event as an interesting
temporal composition of objects, a better characterization of an event is an interesting
spatiotemporal instance. This allows us to include spatial combinations of objects,
for example the presence of a face in front of a map in an image, as events too.
Detection of events has received considerable interest in multimedia literature. For
example, there is a large amount of literature related to the detection of events in sports
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videos. Methods have been developed to detect and highlight events for basketball
[52, 53], baseball [54], soccer [55, 56], and tennis [57]. With the increasing use of
cameras for monitoring and surveillance, many researchers have developed methods
to detect events in such videos [58, 59]. The primary motivation for large interest in
event detection has been that events provide an excellent framework for indexing and
summarizing multimedia data.

Event detection implies knowledge of known patterns forming the event; this, in
turn, means that specific detectors for different events can be built. The existing liter-
ature on event detection exemplifies this where the detectors look for predefined com-
binations of objects through heuristics, rule-based, or classification methods. Event
discovery, on the other hand, implies no prior knowledge of the event characteristics.
In fact, the only supposition for event discovery is that the event is something out of
the ordinary; that is, an event is an interesting outlier combination of objects. With this
viewpoint, the literature on event discovery is sparse and only recently researchers
have begun to look for event discovery in multimedia data mining [58, 59].

An example of recent work on event discovery is the work of Divakaran and
his group [60, 61] with raw audio and video, which they term as unscripted media.
Their framework for event discovery is shown in Figure 2.5. In this framework, the
multimedia data are windowed and processed to extract features. These features are
viewed as time series data, which are converted to a time series of discrete labels
through classification and clustering. For example, audio data from a sport broadcast
can be classified into a series of distinct labels such as Applause, Cheering, Music,
Speech, and Speech with Music. Unusual subsequences in the discrete time series
of labels are next detected as outliers by eigenvector analysis of the affinity matrix
constructed from estimated statistical models of subsequences of the time series.
The length of the subsequences used for statistical model building determines the
context in which the events are discovered. The overlap between the subsequences
determines the resolution at which the events are discovered. The detected outliers are
then ranked on the basis of how well they deviate from background sequences. The
interestingness of the ranked outliers is next determined by bringing in the domain
knowledge to discover interesting events in the data. Divakaran and his group have
successfully applied this methodology to discover events in audio broadcasts of sports
and audio captured at traffic intersections. For example, they have shown that their
approach was able to discover “ambulance crossing” event in audio data.

Another example of event discovery is the work of Zhong et al. [62], where an
unsupervised technique is presented for detecting unusual activity in a large video set.
In their method, the video is divided into small segments of equal lengths and each
segment is classified into one of the many prototypes using color, texture, and mo-
tion features. The detection of unusual events is done by performing a co-occurrence
analysis of feature prototypes and video segments. The method has been applied to
surveillance video and shown to discover events such as cars making U-turns and
backing-off. Another recent example of event discovery work is the semisupervised
adapted hidden Markov Model (HMM) framework [17] in which the usual or back-
ground event models are first learned from the training data. These models are then
used to compute the likelihood of short subsequences of the test data to locate outliers
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that show up with small likelihood values. The outliers are then used to adapt the
background models to create models for unusual events and locate new unusual event
types by iterating the process. The method has been applied to audio and audio-
visual data to automatically discover events, such as discovery of interruptions in
a multimedia presentation because of questions from audience and laughter from
audience.

A related problem to event discovery is the feature discovery problem. A large
body of multimedia processing research has dealt with the extraction of features and
their use in building indices for content browsing and retrieval. The features described
earlier or their variations are typically used for such purposes. While such an approach
of using predefined or handcrafted features generally works well, it is tempting to
employ data mining methods for the automatic discovery of low-level features that
might be best suitable for a given collection of multimedia.

Fig. 2.6. Minimal spanning graph representation of three categories of images using discovered

features (taken from Ma et al. [63]).
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An example of a feature discovery approach is provided by the work of
Mukhopadhyay et al. [63], who have used it to build features for the retrieval and
browsing of a collection of images of faces, people, and buildings. Their feature
discovery approach is designed for shape features that are extracted from edges
of objects in images. After edge extraction, each edge image is partitioned into
subimages of a certain size, for example, 16 × 16. These subimages are then used to
construct a codebook whose entries are the low-level features discovered. The salient
point of this work is that the codebook is built using the Hausdorff metric [64], which
is able to take into account perceptual similarity of edge fragments, an important
requirement for retrieval. By looking at the co-occurrences of the discovered features,
Mukhopadhyay, Ma, and Sethi have shown that images of different characteristics
tend to get clustered in different groups and that there exists a gradual change in
clusters as one moves from one cluster to another neighboring cluster as shown in
the minimal spanning graph of Figure 2.6.

Lam and Ciesielski [65] describe another example of feature discovery for discov-
ering texture features through genetic programming [66]. In this work, the input is the
gray-level histograms of 16 × 16 subimages. Through genetic programming, various
combinations of inputs are searched and evaluated through a fitness function based on
how well different texture subimages are separated. The results seem to indicate that
discovered texture features are able to yield classification accuracies close to some
well-known texture features. Thus, it is a promising approach for building features.

2.8 Conclusion

The multimedia data mining is an active and growing area of research. While the ma-
jority of the work has been devoted to the development of data mining methodologies
to deal with the specific issues of multimedia data, the origin of the multimedia data
mining lies in the pioneering work of Fayyad and his coworkers [67–69] at NASA in
the early nineties when they developed several applications including the cataloging
of astronomical objects and identification of volcanoes. Since then, several applica-
tions of multimedia data mining have been investigated [70–74]. Many of the recent
multimedia data mining applications are focused on traffic monitoring and video
surveillance, possibly due to increased attention to homeland security. In the coming
years, we expect the multimedia data mining applications to grow especially in areas of
entertainment and medicine. Almost all of the multimedia data mining efforts to date
have been with the centralized data mining algorithms; however, this is expected to
change as more and more multimedia content is searched and accessed through peers.
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3. A New Hierarchical Approach
for Image Clustering

Lei Wang and Latifur Khan

Summary. The key problem in achieving efficient and user-friendly retrieval in the domain
of image is the development of a search mechanism to guarantee delivery of minimal irrelevant
information (high precision) while ensuring that relevant information is not overlooked (high
recall). The unstructured format of images tends to resist the deployment of standard search
mechanism and classification techniques. As a method to provide better organization of images,
clustering is an important aspect for effective image retrieval. In this chapter, we introduce a
clustering method based on unsupervised neural nets and self-organizing maps. In dynamic
growing self-organizing tree algorithm (DGSOT), a hierarchy is constructed from top to bottom.
We observe that DGSOT outperforms the traditional Hierarchical Agglomerative Clustering
(HAC) algorithm in terms of E-measure.

3.1 Introduction

The development of technology in the field of digital media generates huge amounts
of nontextual information, such as audio, video, and images, as well as more familiar
textual information. The potential for the exchange and retrieval of information is
vast, and at times daunting. In general, users can be easily overwhelmed by the
amount of information available via electronic means. The need for user-customized
information selection is clear. The transfer of irrelevant information in the form of
documents (e.g., text, audio, and video) retrieved by an information retrieval system
which are of no use to the user wastes network bandwidth and frustrates users. This
condition is a result of inaccurate representations of the documents in the database, as
well as confusion and imprecision in user queries, since users are frequently unable to
express their needs efficiently and accurately. These factors contribute to the loss of
information and to the provision of irrelevant information. Therefore, the key problem
to be addressed in information selection in the domain of image is the development
of a search mechanism that will guarantee the delivery of a minimum of irrelevant
information (high precision), as well as ensuring that relevant information is not
overlooked (high recall).

The unstructured format of images tends to resist the deployment of standard
search mechanism and classification techniques. As a method to provide better
organization of images, clustering is important for effective image retrieval. A good
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image database system should provide users different kind of access modes that
include searching, browsing, and navigating. The database should be organized prop-
erly to support all these modes of access. Indexing techniques can support searching.
Browsing is supported by abstraction techniques that summarize images in a good
manner. Image navigation need to use methods that group related images together.
Obviously, a good clustering method is highly required for all these. The ability of
the system to retrieve relevant documents based on search criteria could be greatly
increased if they were able to provide an accurate clustering method.

Most of information retrieval methods are based on features [15, 38]. These fea-
tures can be key words or phrases in a text-based information retrieval system. And,
the counterparts for images are color, texture and shape etc. As compared to text-based
information retrieval, image has opaque relationship with computes and feature ex-
traction is more difficult. Images consist of various objects, each of which may be
used to effectively classify the image [6, 7, 22]. Dynamic growing self-organizing
tree (DGSOT) [21, 22] discussed in this chapter constructs a hierarchy using a self-
organizing tree that constructs a hierarchy from top to bottom. Similarity of images
is based on similarity of objects that appear in images. In addition, object similarity
takes into account three image features: color, shape, and texture. The idea here is
that features will reflect the content of images in some degree. Different features
will reflect different aspects of images. After detecting objects in images, we ex-
tract color, shape, and texture information and express those using vectors. Then
considering these three features, we calculate the similarity between objects apply-
ing vector space model. Before image clustering, we cluster objects according to
similarities between objects and assign a weight for each object cluster. Next, we
construct a vector for each image on the basis of weights of object clusters and
calculate similarities between images using vector space model. Finally, on the ba-
sis of image similarities, we cluster images and build hierarchy, using clustering
algorithms.

We have observed that our DGSOT outperforms hierarchical agglomerative clus-
tering in terms of precision, recall, and E-measure. The main contributions of this
work will be as follows.

We propose a new mechanism that can be used to generate hierarchy automatically,
and to make our approach scalable. For this, we propose various clustering algorithms
for the construction of top to bottom hierarchies based on unsupervised learning and
a self-organizing map. In this regard, a new DGSOT algorithm is presented. We
demonstrate that DGSOT outperforms most widely used agglomerative hierarchical
clustering algorithms in terms of precision, recall, and E-measure.

Section 3.2 discusses related works. Section 3.3 presents our approach in detail.
Section 3.4 presents result. Section 3.5 contains our conclusion and possible areas of
future work.

3.2 Related Works

Several systems exist today that attempt to classify images based on their content.
Successful classification of an image and its contents relates directly to how well
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relevant images may be retrieved when a search is preformed. Most image storing
systems such as QBIC and VisualSEEK limit classification mechanism to describing
an image based on metadata such as color histograms, texture, or shape features [3, 12,
13, 30, 31, 34, 36, 37]. These systems have high success in performing searches in
which the users specify images containing a sample object, or a sample texture pattern.
Should a user ask for an image depicting a basketball game, the results become less
accurate. This is due to the fact that although an image may contain a basketball, it
does not depict a basketball game. Systems that contain only metadata regarding the
objects contained in an image cannot provide an accurate classification of the entire
image.

In our system, we have a hierarchy where similar images are grouped together.
This similarity is based not only on features directly but also on all features along
with finer granularity (individual object) rather than coarser grain (i.e., entire image).
For example, a football game image may contain green field, goalposts, and football
objects. An image containing only a football would be classified as a football game
based on color similarity analysis. On the other hand, shape or texture similarity may
also misclassify image. On the basis of purely shape similarity, we may identify a
basketball as a football. Therefore, neither color-based nor shape-based similarity is
adequate to classify images. We need to combine these two similarities together to
understand semantic meaning of images. Therefore, to classify images effectively,
we need a hierarchy where images based on color, shape, and texture features are
grouped together.

Other systems attempt to provide images with more precise descriptions by ana-
lyzing other elements surrounding images, such as captions [33, 35], or HTML tags
on Web pages [14]. These systems use this information to assist image classification
and generate meaningful description for images. This approach, tied together with
metadata on images such as histograms, texture, and color sampling, has the potential
to yield high-precision results in image classification. Examining the textual descrip-
tions associated with an image provides additional information that may be used to
classify the image more accurately [24, 45]. Unfortunately, this approach does not
take into account the connections among individual objects presented in a sample im-
age. Such connections provide useful information in the form of relationships among
objects presented in the image, which could be used to classify the image’s content.

3.3 Hierarchy Construction and Similarity Measurement

An efficient clustering method is desired for images. In this section we present our
approach in detail.

First of all, we segment all input images into objects (see [44] for more details)
and calculate similarities between each two objects on the basis of color, texture and
shape features. Second, we cluster similar objects into various groups based on object
similarity (see Section 3.3.1 for more details). On the basis of object groups, we deduct
weight by calculating term frequency and inverse document frequency (see Section
3.3.2 for more details). Third, we construct a vector for each image and calculate
similarities between each two images, using vector model. Image vectors are decided



P1: OTE/SPH P2: OTE
SVNY295-Petrushin September 19, 2006 17:3

44 Lei Wang and Latifur Khan

Input images

Detected objects 

Object groups and 
corresponding
weights

Image vectors 

Hierarchical tree 

Image segmentation

Group objects and assign weight

Construct image vectors

DGSOT

Fig. 3.1. Major steps of our approach.

by the objects contained in each image, and the vector length will be the number
of object groups (see Section 3.3.2 also). Finally, use some clustering algorithm to
cluster images based on image similarity. For this, several existing techniques are
available such as hierarchical agglomerative clustering algorithm (HAC) [10, 32,
42], self-organizing map (SOM) [17, 19, 23], and self-organizing tree (SOTA) [1,
11]. In this chapter, we use our algorithm named dynamic growing self-organizing
tree (DGSOT) (see Section 3.3.3). Note that object similarity is determined by the
combination of color similarity, texture similarity and shape similarity. The major
steps are shown in flow chart in Figure 3.1.

Basically, image segmentat process has three steps [44]. First, we need to extract
color edges from areas of different color. Second, on the basis of the color edges
we discovered in step one, we divide the image into several subregions by using
region-growing techniques. In the final step, adjacent regions having similar colors
are merged together. Here we recognize the object boundary, and later we will try to
group similar objects together. Since we avoid object identification or classification
by exploiting clustering (i.e., unsupervised), we firmly believe we will get better result
(see Section 3.4).

3.3.1 Object Clustering

After segmenting images into objects, some of objects have semantic meanings and
some do not have. Let us assume that we have N images in database. After segmen-
tation, we have total M detected objects, and then we cluster these M objects into
t different groups C1, C2, . . . Ct according to similarities between objects. Basically,
if visual features of objects such as color, shape, or texture are similar, it would be
very possible that the objects have similar semantic meanings. Hence, we calculate



P1: OTE/SPH P2: OTE
SVNY295-Petrushin September 19, 2006 17:3

3. A New Hierarchical Approach for Image Clustering 45

object similarities, using color, shape, and texture features. Consequently, these object
similarities exhibit semantic similarities between objects. So, before knowing object
similarity, we need to calculate color, shape, and texture similarity first.

3.3.1.1 Color Similarity Measure

Color similarity measurement is important in computer vision research. Many meth-
ods have been proposed [9, 29, 39, 43]. To compute color similarity, we extract
color information from object i pixel by pixel and construct a color vector Vi(v1,i ,
v2,i , . . . vp,i , . . . vk,i ) to express the color histogram. Each item in this vector represents
the percentage of pixels whose hue value locates in specific interval. For example,
vp,i is the percentage of pixels whose hue values are between 2∗π∗ p/k and 2∗π∗

(p + 1)/k in object i , because the range of hue value in HSI color space is from 0 to
2∗π . For each object, there is a unique V , so we could evaluate the degree of color
similarity between object i and object j . That is,

simc(i, j) =
�ic • �jc∣∣∣�ic

∣∣∣ ×
∣∣∣ �jc

∣∣∣ =
∑k

p=1 vp,i × vp, j√∑k
p=1 v2

p,i ×
√∑k

p=1 v2
p, j

(3.1)

The value of k affects the accuracy of color similarity. Along with increasing of k,
accuracy will increase also. In our case, we choose k = 12.

3.3.1.2 Shape Similarity Measure

The computation of shape similarity is a little bit more complicated [4, 26, 41]. To
support similarity queries, Lu and Sajjanhar [27] introduced fixed resolution (FR)
representation method. We accept the idea of this method basically, but made some
changes during implementation. First, we need to find major axis for each object
that is the longest line joining two points on the boundary. Rotate an angle θ around
mass centroid of an object to make its major axis to be parallel to x-axis and keep
the centroid above the major axis. The reason to do that is to normalize the object to
make it invariant to rotation [8]. The coordinates of the centroid are as below. σ (x, y)
is surface density function.

x =
∫∫

xσ (x, y)d A

M
y =

∫∫
yσ (x, y)d A

M
(3.2)

After doing normalization, we create a q * q grid, which is just big enough to
cover the entire object, and overlaid on the object. The size of each cell is same. Define
a shape vector Ui (u1,i , u2,i , . . . u p,i , . . . uq2,i ) sized q2 which corresponds to q2 cells.
Each item in the vector stands for the percentage of pixels in corresponding cell. The
higher the q value is, the higher the accuracy. Of course, raise the calculation cost as
result. If images are simple, it is not necessary to choose a high q. In our case, q is
4, which is good enough for small simple images. We could calculate the degree of
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shape similarity between two shape vectors. Formula is similar to Equation (3.1).

sims(i, j) =
�is • �js∣∣∣�is

∣∣∣ ×
∣∣∣ �js

∣∣∣ =
∑q2

p=1
u p,i × u p, j√∑q2

p=1
u2

p,i ×
√∑q2

p=1
u2

p, j

(3.3)

3.3.1.3 Texture Similarity Measure

The texture retrieval is harder than color and shape, because there is no clear definition
of “texture.” The texture of an image region is decided by gray level distribution.
Basically, there are three kinds of approaches to extract texture features: spectral
approach, structural (or syntactic) approach, and statistical approach. For statistical
approach, according to the order of the utilized statistical function, we have two
categories of descriptors: First-Order Texture Features and Second-Order Texture
Features [16]. The difference is that the first-order statistics do not provide information
about the relative positions of different gray levels. In our method, intensity value in a
region is homogeneous, so the positions of different gray levels are not very important
here. To reduce calculation complexity, we choose to use first-order texture features
to generate texture feature vector.

We define I be the variable representing the gray level of regions, P(I) be the
fraction of pixels with gray level I , and Ng be the number of possible gray levels.

So, the moments are

mi = E
[
I i

] =
Ng−1∑
I=0

I i P(I ) i = 1, 2, . . . (3.4)

Central moments are

μi = E[(I − E[I ])i ] =
Ng−1∑
I=0

(I − m1)i P(I ) (3.5)

For any given I , we can have most frequently used central moments μ2, μ3, μ4.
Generate texture vector using central moments. Similarity between two texture vectors
is still similar to Equation (3.1).

3.3.1.4 Combined Similarity

Finally, using linear similarity combination, we can simply assign 1/3 for the weights
of all three features here. We could change weights to adjust object-clustering result.
We define a threshold Tobj. If and only if the similarity between two objects is larger
than Tobj, the two objects can be in same group. The object similarity between each
pair of objects in same group must be higher than Tobj. It is possible that one object
appears in more than one group.

In addition to the above method, we plan to try another method for objects clus-
tering, using Dempster–Shafer evidence combination. In that case, we will consider
three sources of evidence: color, shape, and texture. Obviously, all these evidences
are independent from each other. Assume that we have n object clusters (C1, C2, . . .
Cn) currently, and each cluster has an eigen-object (obj1, obj2, . . . objn). For an input
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object, calculate the orthogonal sum of three belief functions (mC,S,T) using Demp-
ster combination formula for each cluster. Finally, the cluster having highest mC,S,T

will own the new object. We define another threshold Tb. If the mC,S,T for all existed
clusters are less than Tb, we need to create a new object cluster.

3.3.2 Vector Model for Images

Image clustering is based on image similarity. To calculate image similarity, we
construct an image vector Wl(w1,l , w2,l . . . wi,l , . . . wt,l) rather than compare images
directly. The size of vector W is same as the total number of object clusters. Each
item in the image vector is the weight for corresponding object cluster in the image
l. For example, wi,l is the weight of object cluster Ci in the image l.

To get image vector, we borrow the idea of the vector model for text information
[2]. Images correspond to documents and object clusters correspond to terms. Let N
be the total number of images and ni be the number of images in which the objects
in cluster Ci ever appears. Define the normalized frequency fi, j as below.

fi,l = freqi,l

maxh freqh,l
(3.6)

freqi,l is the number of times the cluster Ci appears in the image l. The maximum
is calculated over all clusters which ever appeared in the image l. Such frequency is
normally referred to as the tf factor, which indicates how well the cluster i describes
the image l. But if the objects from one cluster appear in most of images, the cluster
is not very useful for distinguishing a relevant image from a nonrelevant one. So, we
need to define an inverse document frequency idfi for Ci as following.

idfi = log
N

ni
(3.7)

Balancing above two factors, we have the weight of cluster.

wi,l = fi,l × idfi = fi,l × log
N

ni
(3.8)

After computing image vectors, we could get similarity between any two images
by calculating the degree of similarity between two image vectors.

simimg(i, j) =
�i • �j∣∣�i∣∣ × ∣∣ �j ∣∣ =

∑t

h=1
wh,i × wh, j√∑t

h=1
w2

h,i ×
√∑t

h=1
w2

h, j

(3.9)

3.3.3 Dynamic Growing Self-Organizing Tree (DGSOT) Algorithm

The DGSOT is a tree structure self-organizing neural network. It is designed to
discover the correct hierarchical structure of the underlying data set. The DGSOT
grows in two directions: vertical and horizontal. First, in the direction of vertical
growth, the DGSOT adds children, and in the direction of horizontal growth, the
DGSOT adds more siblings. In vertical growth of a node, only two children are added
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to the node. In horizontal growth we strive to determine suitable number of children
to represent data that are associated with the node. Thus, the DGSOT chooses the
right number of subclusters at each hierarchical level during the tree construction
process. During the tree growth, a learning process similar to the self-organizing tree
algorithm (SOTA) is adopted.

The pseudo code of DGSOT is shown below:

Step 1: [Initialization] initially the tree has only one root node. The reference vector
of this root node is initialized with the centroid of the entire collection, and all data
will be associated with the root. The time parameter t is initialized to 1.

Step 2: [Vertical Growing] the leaves whose heterogeneity is greater than a threshold
will change itself to a node x and create two descendent leaves. The reference
vector of a new leaf is initialized with the node’s reference vector.

Step 3: [Learning] for each input data associated with node, x , the winner is found
(using KLD see Sections 3.3.3.1 and 3.3.3.4), and then the reference vectors of
the winner and its neighborhood are updated. If the relative error of the entire
tree is larger than a threshold, called error threshold (TE), t is increased by 1, i.e.,
t = t + 1, and then Step 3 is repeated.

Step 4: [Horizontal Growing] for each lowest node (not leaf), if the horizontal growing
stop rule is unsatisfied, a child leaf is added to this node; if it is satisfied, a child
leaf is deleted from this node, and the horizontal growth is terminated.

Step 5: [Learning] for each input data, the winner is found (using KLD, see
Section 3.3.3.4), and then the reference vectors of the winner and its neighbor-
hood are updated. If the relative error of the entire tree is larger than a threshold,
called error threshold (TE), t is increased by 1, i.e., t = t + 1, and then Step 5 is
repeated.

Step 6: [Expansion] if there are more levels necessary in the hierarchy (i.e., vertical
growing stop rule is reached), then return to Step 2; otherwise, stop.

Step 7: [Pruning] the leaf node with node data associated with it is deleted.

Let d be the branch factor of the DGSOT, then the height of the DGSOT will be
lgdN, where N is the number of data. Let K be the average number of learning iterations
to expand the tree one more level. Because in each learning iteration all data need to
be distributed, the time complexity to build a full DGSOT will be O (K ∗N ∗ lgdN ).

3.3.3.1 Learning Process

In DGSOT, the learning process consists of a series of procedure to distribute all
the data to leaves and update of the reference vectors. Each procedure is called a
cycle. Each cycle contains a series of epochs. Each epoch consists of a presentation
of all input data and each presentation has two steps: finding the best math node and
updating the reference vector. Similar to SOTA, the input data is compared only to the
leaf nodes to find the best match node, which is known as the winner. The leaf node
c, which has the minimum distance to the input data x , is the best match node/winner.

c : ||x − nc|| = min
i

{||x − ni ||} (3.10)
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Fig. 3.2. Different neighborhoods of winner (indicated by arrow) in DGSOT.

After a winner c is found, the reference vectors of the winner and its neighborhood
will be updated using the following function:

�wi = ϕ(t) × (x − wi ) (3.11)

Where ϕ(t) is the learning function:

ϕ(t) = α × η(t) (3.12)

η(t) is the learning rate function, α is the learning constant, and t is the time
parameter. The convergence of the algorithm depends on a proper choice of α and
η(t). During the beginning of the learning function η(t) should be chosen close to 1,
thereafter, it decreases monotonically. One choice can be η(t) = 1/t .

Since neighborhood will be updated, there are two types of neighborhoods of
a winning cell: If the sibling of the winner is a leaf node, then the neighborhood
includes the winner, the parent node, and the sibling nodes. On the other hand, if
the sibling of the winning cell is not a leaf node, the neighborhood includes only the
winner and its parent node (see Figure 3.2). The updating of the reference vector of
siblings is important so that data similar to each other are brought into same subtree.
The α the winner, the parent node and the sibling nodes will have different values.
Parameters αw, αm , and αs are used for the winner, the parent node, and the sibling
node, respectively. Note that the parameter values are not equal. The order of the
parameters is set as αw > αs > αm. This is different from the SOTA setting, which
is αw > αm > αs. In SOTA, an inorder traversal strategy is used to determine the
topological relationship in the neighborhood. And in DGSOT, a postorder traversal
strategy is used to determine the topological relationship in the neighborhood. In our
opinion, only the nonequal αw and αs are critical to partitioning the input data set
into different leaf nodes. The goal of updating the parent node’s reference vector is to
make it more precise to represent all the data associated with its children (see KLD,
Section 3.3.3.4).

The Error of the tree, which is defined as the summation of the distance of each
input data to the corresponding winner, is used to monitor the convergence of the
learning process. A learning process has converged when the relative increase of
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Error of the tree falls below a given threshold.∣∣∣∣Errort+1 − Errort

Errort

∣∣∣∣ < ErrorThreshold (3.13)

It is easier to avoid over training the tree in the early stages by controlling the
value of Error of the tree during training.

3.3.3.2 Vertical Growing

In DGSOT, a nongreedy vertical growing is used. During vertical growing the leaves
whose heterogeneity is greater than a threshold will change itself to a node and create
two descendent leaves. The reference vectors of these leaves will be initialized by
their parents.

There are several ways to determine the heterogeneity of a leaf. One simple way
is to use the number of data associated with a leaf as its heterogeneity. This simple
approach controls the number of elements that appear in each leaf node. The other
way is to use the average error e of a leaf as its heterogeneity. This approach does
not depend on the number of data associated with a leaf node. The average error e
of a leaf is defined as the average distance between the leaf node and the input data
associated with the leaf:

ei =
D∑

j=1

d(x j , ni )

|D| (3.14)

where D is the total number of input data assigned to the leaf node i . d(x j , ni ) is the
distance between data j and leaf node i . ni is the reference vector of the leaf node i .

For the first approach, the data will be evenly distributed among the leaves. But the
average error of the leaves may be different. For the second approach, the average error
of each leaf will be similar to the average error of the other leaves. But the number of
data associated with the leaves may vary substantially. In both approaches, the DGSOT
can easily stop at higher hierarchical levels, which will save the computational cost.

3.3.3.3 Horizontal Growing

In each vertical growing, only two leaves are created for a growing node. In each hori-
zontal growing, the DGSOT tries to find an optimal number of leaf nodes (subcluster)
of a node to represent the clusters in each node’s expansion phase. Therefore, DGSOT
adopts a dynamically growing scheme in each horizontal growing stage. For a lowest
nonleaf node (heterogeneous one), a new child (subcluster) is added to the existing
children. This process continues until a certain stop rule is reached. Once the stop
rule is reached, the number of children nodes is optimized. For example, in a tree a
nonleaf node has three children. If the horizontal growing criterion does not match
the stop rule, a new child is added. Similarly, if the addition of a new child satisfies
the stop rule, the child is deleted and the horizontal growing is stopped. After each
addition/deletion of a node, a learning process is performed (see Sections 3.3.3.1
and 3.3.3.4).
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Determining the true number of clusters, known as the cluster validation problem,
is a fundamental problem in cluster analysis. It will be served as a stop rule. Several
kinds of indexes have been used to validate the clustering [46]: one index based on
external and internal criteria. This approach is based on statistical tests along with
high computational cost. Since the DGSOT algorithm tries to optimize the number
of clusters for a node in each expansion phase, the cluster validation is used heavily.
Therefore, the validation algorithms used in DGSOT must have a light computational
cost and can be easily evaluated. Here we suggest average distortion (AD) measure.

AD is used to minimize intracluster distance. The average distortion of a subtree
is defined as

AD = 1

N

N∑
i=1

|d(xi , w)|2 (3.15)

where N is the total number of input data assigned in the subtree, and w is the reference
vector of the winner of input data xi . The AD is the average distance between input
data and its winner. During DGSOT learning, the total distortion is already calculated
and the AD measure is easily computed after the learning process is finished. If the
AD versus the number of clusters is plotted, the curve is monotonically decreasing.
There will be much smaller drop after the number of clusters is greater than the “true”
number of the clusters, because crossing this point we add more clusters simply
to partitions within, rather between, “true” clusters. After a certain point the curve
becomes flat. This point indicates the optimal number of the clusters in the original
data set. Then the AD can be used as a criterion to choose the optimal number of
clusters. In horizontal growing phase, if the relative value of AD after adding a new
sibling is less than a threshold ε (Equation 3.16), then the new sibling will be deleted
and the horizontal growing will stop.

|ADK+1 − ADK |
ADK

< ε (3.16)

where K is the number of siblings in a subtree and ε is a small value, generally it is
less than 0.1.

3.3.3.4 K-Level up Distribution (KLD)

Clustering in a self-organizing neural network is a distortion-based competitive learn-
ing. The nearest neighbor rule is used to make the clustering decision. In SOTA, data
associated with then parent node will be distributed only between its children. If data
are incorrectly clustered in the early stage, these errors cannot be corrected in the
later learning process.

To improve the cluster result, we propose a new distribution approach called
K-level up distribution (KLD). Data associated with a parent node will be distributed
not only to its children leaves but also to its neighboring leaves. The following is the
KLD strategy:

� For a selected node, its K level ancestor node is determined.
� The subtree rooted by the ancestor node is determined.
� Data assigned to the selected node will be distributed among all leaves of the subtree.
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Fig. 3.3. One level up distribution (K = 1).

For example, Figure 3.3 shows the scope of K = 1. Now, the data associated with
node M needs to be distributed to the new created leaves. For K = 1, the immediate
ancestor of M will be determined, which is A. The data associated with node M will
be distributed to leaves B, C, D, and E of the subtree rooted by A. For each data, the
winning leaf will be determined among B, C, D, and E using Equation (3.10). Note
that if K = 0, data of M will be distributed between leaf B and C. This latter approach
is identical to the conventional approach.

3.4 Experiment Results

As of today we are developing a system for image segmentation and clustering. A
user can input an image for segmentation, the system will output detected boundary
and all segmented regions in thumbnail format (see Figure 3.4). Users can double
click thumbnails to view result with bigger size (as shown in Figure 3.4). Then from
these segmented images, similar objects will be grouped together, and weigh will be
assigned for each group (see Section 3.3.1). Thus, an image will be represented by a
vector with a set of objects along with weights (see Section 3.3.2). Next, we have built
a hierarchy using DGSOT by exploiting these vectors (see Section 3.3.3). Figure 3.5
has shown a hierarchical tree to display the clustering result.

One of the purposes of this experiment is to demonstrate how accurate the cluster-
ing is. The image data set contains a set of images, which are belonged to six different
categories such as basketball, baseball, bats, football, goggle, and playground. After
segmentation using our algorithms [44], the total number of objects is around 1500.
In this experiment, we use 80% of these images as training data to generate the hi-
erarchical tree and use the rest 20% of these images as testing data to evaluate the
result. The clustering accuracy is evaluated by using common E-measure [40]. The
definition of E is shown in Equation (3.17). After each round, we reshuffle the data
set and do it again with different training and testing data set. The percentages for
training and testing data are still 80 and 20, respectively. We have repeated these for
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Fig. 3.4. Segmentation result for an image.

Fig. 3.5. Hierarchical tree for clustering result.
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Fig. 3.6. E-measure comparisons of DGSOT and HAC.

five rounds. The final E-measure is the average of E-measures that we got in each
round above. The error threshold in Equation (3.13) for DGSOT is set to 0.01 and
sibling threshold ε in Equation (3.16) is set to 0.02.

E(p, r ) = 1 − 2

1/p + 1/r
(3.17)

where p and r are standard precision and recall of the cluster with respect to the
set of images. E varies between 0 and 1. E is equal to 0 when p and r are all
1, and 1 when both p and r are 0. We average p and r , using formula (3.17) to
calculate the E value for clustering. We tested cluster accuracy when query images
are from different categories. Figure 3.6 shows the results of E-measure for above
categories and average using two cluster algorithms, DGSOT and the most widely
used, hierarchical agglomerative clustering (HAC) respectively. In Figures 3.6, x-axis
represents different categories and y-axis is E-measure.

The average precision of DGSOT and HAC is 0.84 and 0.80 respectively. The
average recall of all these clusters of DGSOT and HAC is 0.73 and 0.75 respec-
tively. Figure 3.6 shows the comparative E-measures for these two algorithms. Re-
sults show that DGSOT (average E = 23.8%) outperforms HAC algorithm (average
E = 25.6%).

3.5 Conclusion and Future Works

In this chapter we have proposed new automatic image clustering methods. To de-
velop a hierarchy, we developed a dynamic growing self-organizing tree algorithm
(DGSOT) that constructs a hierarchy from top to bottom and compared it to traditional
Hierarchical Agglomerative Clustering (HAC) algorithm.

We would like to extend this work in the following directions. First, we would
like to do more experiments for different data set. Second, we would like to ex-
periment with other knowledge base (like CYC). Third, we would implement some
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image-searching algorithm based on hierarchical tree we got in this chapter. Finally,
we will develop algorithms to integrate newly coming images into the existing hier-
archy structure.
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4. Multiresolution Clustering of Time Series
and Application to Images

Jessica Lin, Michail Vlachos, Eamonn Keogh, and Dimitrios Gunopulos

Summary. Clustering is vital in the process of condensing and outlining information, since

it can provide a synopsis of the stored data. However, the high dimensionality of multime-

dia data today presents an insurmountable challenge for clustering algorithms. Based on the

well-known fact that time series and image histograms can both be represented accurately

in a lower resolution using orthonormal decompositions, we present an anytime version of

the k-means algorithm. The algorithm works by leveraging off the multiresolution property

of wavelets. The dilemma of choosing the initial centers for k-means is mitigated by assign-

ing the final centers at each approximation level as the initial centers for the subsequent,

finer approximation. In addition to casting k-means as an anytime algorithm, our approach

has two other very desirable properties. We observe that even by working at coarser ap-

proximations, the achieved quality is better than the batch algorithm, and that even if the

algorithm is run to completion, the running time is significantly reduced. We show how this

algorithm can be suitably extended to chromatic and textural features extracted from images.

Finally, we demonstrate the applicability of this approach on the online image search engine

scenario.

4.1 Introduction

The vast growth of disk technology in the past decade has enabled us to store large
multimedia databases, such as audio, video, images, time series, etc. While storage is
no longer an impediment, it has become increasingly clear that an interactive process
is needed for humans to efficiently browse through the enormous amount of data.
Clustering has proven to be an invaluable tool for distinguishing homogeneous object
groups and for producing representatives of the discovered clusters. For example,
image clustering is essential for many applications, such as geospatial applications
(aerial and satellite photographs), medicine (distinction of tumor images), robot vision
(object recognition), online searching (annotation of images), etc. In addition to the
high dimensionality of such data, one has to be careful in extracting features that are
coherent with the human perceptual system. Such features include, but are not limited
to, color, texture, shape, and location. Essentially, the objective is to select content
descriptors that are tailored to a specific application and will lead to discovery of
homochromous or homomorphic objects.

58
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Although numerous clustering algorithms have been proposed, the majority of
them work in a batch fashion, thus hindering interaction with the end users. Here we
address the clustering problem by introducing a novel anytime version of the popular
k-means clustering algorithm [9, 18] based on the wavelet decomposition. Anytime
algorithms are valuable for large databases, since results are produced progressively
and are refined over time [11]. Their utility for data mining has been documented at
length elsewhere [2, 20]. While k-means algorithm and wavelet decompositions have
both been studied extensively in the past, the major novelty of our approach is that
it mitigates the problem associated with the choice of initial centers, in addition to
providing the functionality of user interaction.

The algorithm works by leveraging off the multiresolution property of wavelets
[6]. In particular, an initial clustering is performed with a very coarse representation
of the data. The results obtained from this “quick and dirty” clustering are used
to initialize a clustering at a finer level of approximation. This process is repeated
until the “approximation” is the original “raw” data or until the clustering results
stabilize. Furthermore, our approach allows the user to interrupt and terminate the
process at any level. In addition to casting the k-means algorithm as an anytime
algorithm, our approach has two other very unintuitive properties. The quality of the
clustering is often better than the batch algorithm, and even if the algorithm is run
to completion, the time taken is typically much less than the time taken by the batch
algorithm. We first formulate it as a generic time series problem, since the histograms
we extract from images can be well treated as time series. In particular, the high
dimensionality and high feature correlation suggest that a time-series algorithm can
be suitably applied to image histograms. In this setting, we illustrate the speedup and
scalability of the algorithm, in addition to its improved accuracy. Then we show how
this novel algorithm can be applied on histograms extracted from image colors and
texture. In addition, we demonstrate how a clustering postfiltering step can enhance
the interpretability of the results from online image search engines.

The rest of this paper is organized as follows. In Section 4.2, we review re-
lated work, and introduce the necessary background on the wavelet transform and
k-means clustering. In Section 4.3, we introduce our algorithm. Section 4.4 contains
a comprehensive comparison of our algorithm to classic k-means on real data sets.
In Section 4.5, we apply the algorithm on image data. Section 4.6 summarizes our
findings and offers suggestions for future work.

4.2 Background and Related Work

Since our work draws on the confluence of clustering, wavelets, and anytime algo-
rithms, we provide the necessary background on these areas in this section.

4.2.1 Background on Clustering

One of the most widely used clustering approaches is hierarchical clustering, due to
the great visualization power it offers [14]. Hierarchical clustering produces a nested
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Table 4.1. An outline of the k-means algorithm

Algorithm k-means

1. Decide on a value for k.

2. Initialize the k cluster centers (randomly, if necessary).

3. Decide the class memberships of the N objects by assigning them

to the nearest cluster center.

4. Reestimate the k cluster centers, by assuming that the member-

ships found above are correct.

5. If none of the N objects changed membership in the last iteration,

exit. Otherwise go to 3.

hierarchy of similar groups of objects, according to a pairwise distance matrix of
the objects. One of the advantages of this method is its generality, since the user
does not need to provide any parameters such as the number of clusters. However,
its application is limited to only small data sets, due to its quadratic (or higher order)
computational complexity.

A faster method to perform clustering is k-means [2, 18]. The basic intuition
behind k-means (and a more general class of clustering algorithms known as iterative
refinement algorithms) is shown in Table 4.1.

The k-means algorithm for N objects has time complexity of O(kNrD) [18], with
k the number of clusters specified by the user, r the number of iterations until conver-
gence, and D the dimensionality of the points. The shortcomings of the algorithm are
its tendency to favor spherical clusters, and the fact that the knowledge on the number
of clusters, k, is required in advance. The latter limitation can be mitigated by placing
the algorithm in a loop, and attempting all values of k within a large range. Various
statistical tests can then be used to determine which value of k is most parsimonious.
Since k-means is essentiality a hill-climbing algorithm, it is guaranteed to converge
on a local but not necessarily global optimum. In other words, the choices of the initial
centers are critical to the quality of results. Nevertheless, in spite of these undesirable
properties, for clustering large data sets of time-series, k-means is preferable due to
its faster running time.

In order to scale the various clustering methods to massive data sets, one can
either reduce the number of objects, N , by sampling [2], or reduce the dimension-
ality of the objects [1, 3, 8, 14, 15, 17, 19, 24, 25]. In the case of time series, the
objective is to find a representation at a lower dimensionality that preserves the orig-
inal information and describes the original shape of the time-series data as closely
as possible. Many approaches have been suggested in the literature, including the
Discrete Fourier Transform (DFT) [1, 8], Singular Value Decomposition [17], Adap-
tive Piecewise Constant Approximation [15], Piecewise Aggregate Approximation
(PAA) [4, 25], Piecewise Linear Approximation [14], and the Discrete Wavelet Trans-
form (DWT) [3, 19]. While all these approaches have shared the ability to produce
a high-quality reduced-dimensionality approximation of time series, wavelets are
unique in that their representation of data is intrinsically multiresolution. This prop-
erty is critical to our proposed algorithm and will be discussed in detail in the next
section.
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Fig. 4.1. The Haar Wavelet can represent data at different levels of resolution. Above we see

a raw time series, with increasing faithful wavelet approximations below

Although we choose the Haar wavelet for this work, the algorithm can generally
utilize any wavelet basis. The preference for the Haar wavelet is mainly based on its
simplicity and its wide usage in the data mining community.

4.2.2 Background on Wavelets

Wavelets are mathematical functions that represent data or other functions in terms of
the averages and differences of a prototype function, called the analyzing or mother
wavelet [6]. In this sense, they are similar to the Fourier transform. One fundamental
difference is that wavelets are localized in time. In other words, some of the wavelet
coefficients represent small, local subsections of the data being studied, as opposed
to Fourier coefficients, which always represent global contributions to the data. This
property is very useful for multiresolution analysis of data. The first few coefficients
contain an overall, coarse approximation of the data; additional coefficients can be
perceived as “zooming-in” to areas of high detail. Figure 4.1 illustrates this idea.

The Haar Wavelet decomposition works by averaging two adjacent values on
the time series function at a given resolution to form a smoothed, lower dimensional
signal, and the resulting coefficients are simply the differences between the values and
their averages [3]. The coefficients can also be computed by averaging the differences
between each pair of adjacent values. The coefficients are crucial for reconstructing
the original sequence, as they store the detailed information lost in the smoothed
signal. For example, suppose that we have a time series data T =<2 8 1 5 9 7 2
6>. Table 4.2 shows the decomposition at different resolutions. As a result, the Haar
wavelet decomposition is the collection of the coefficients at all resolutions, with the

Table 4.2. Haar wavelet decomposition on time series <2 8 1 5 9 7 2 6>

Resolution Averages Differences (coefficients)

8 <2 8 1 5 9 7 2 6>

4 <5 3 8 4> < −3 −2 1 −2>

2 <4 6> <1 2>

1 5 −1
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overall average being its first component: <5 −1 1 2 −3 −2 1 −2>. It is clear to
see that the decomposition is completely reversible and the original sequence can be
reconstructed from the coefficients. For example, to get the signal of the second level,
simply compute 5 ± (−1) =< 4, 6 >.

Recently there has been an explosion of interest in using wavelets for time series
data mining. Researchers have introduced several non-Euclidean, wavelet-based dis-
tance measures [13, 22]. Chan and Fu [3] have demonstrated that Euclidean distance
indexing with wavelets is competitive to Fourier-based techniques [8].

4.2.3 Background on Anytime Algorithms

Anytime algorithms are algorithms that trade execution time for quality of results
[11]. In particular, an anytime algorithm always has a best-so-far answer available,
and the quality of the answer improves with execution time. The user may examine
this answer at any time, and choose to terminate the algorithm, temporarily suspend
the algorithm, or allow the algorithm to run to completion.

The usefulness of anytime algorithms for data mining has been extensively doc-
umented [2, 20]. Suppose a batch version of an algorithm takes a week to run (not an
implausible scenario in data mining massive data sets). It would be highly desirable to
implement the algorithm as an anytime algorithm. This would allow a user to examine
the best current answer after an hour or so as a “sanity check” of all assumptions and
parameters. As a simple example, suppose that the user had accidentally set the value
of k to 50 instead of the desired value of 5. Using a batch algorithm, the mistake would
not be noted for a week, whereas using an anytime algorithm the mistake could be
noted early on and the algorithm restarted with little cost.

The motivating example above could have been eliminated by user diligence!
More generally, however, data mining algorithms do require the user to make choices
of several parameters, and an anytime implementation of k-means would allow the
user to interact with the entire data mining process in a more efficient way.

4.2.4 Related Work

Bradley et al. [2] suggest a generic technique for scaling the k-means clustering al-
gorithms to large databases by attempting to identify regions of the data that are
compressible, that must be retained in main memory, and regions that may be dis-
carded. However, the generality of the method contrasts with our algorithm’s explicit
exploitation of the structure of the data type of interest.

Our work is more similar in spirit to the dynamic time warping similarity search
technique introduced by Chu et al. [4]. The authors speed up linear search by exam-
ining the time series at increasingly finer levels of approximation.

4.3 Our Approach—the ik-means Algorithm

As noted in Section 4.2.1, the complexity of the k-means algorithm is O(kNrD), where
D is the dimensionality of data points (or the length of a sequence, as in the case of
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time series). For a data set consisting of long time-series, the D factor can burden
the clustering task significantly. This overhead can be alleviated by reducing the data
dimensionality.

Another major drawback of the k-means algorithm derives from the fact that
the clustering quality is greatly dependant on the choice of initial centers (i.e., line
2 of Table 4.1). As mentioned earlier, the k-means algorithm guarantees local, but
not necessarily global optimization. Poor choices of the initial centers can degrade
the quality of clustering solution and result in longer execution time (See [9] for
an excellent discussion of this issue). Our algorithm addresses these two problems
associated with k-means, in addition to offering the capability of an anytime algorithm,
which allows the user to interrupt and terminate the program at any stage.

We propose using the wavelet decomposition to perform clustering at increasingly
finer levels of the decomposition, while displaying the gradually refined clustering
results periodically to the user. We compute the Haar Wavelet decomposition for all
time-series data in the database. The complexity of this transformation is linear to the
dimensionality of each object; therefore, the running time is reasonable even for large
databases. The process of decomposition can be performed offline, and the time-series
data can be stored in the Haar decomposition format, which takes the same amount of
space as the original sequence. One important property of the decomposition is that it
is a lossless transformation, since the original sequence can always be reconstructed
from the decomposition.

Once we compute the Haar decomposition, we perform the k-means clustering
algorithm, starting at the second level (each object at level i has 2(i−1) dimensions)
and gradually progress to finer levels. Since the Haar decomposition is completely
reversible, we can reconstruct the approximate data from the coefficients at any level
and perform clustering on these data. We call the new clustering algorithm ik-means,
where i stands for “incremental.” Figure 4.2 illustrates this idea.

The intuition behind this algorithm originates from the observation that the general
shape of a time series sequence can often be approximately captured at a lower
resolution. As shown in Figure 4.1, the shape of the time series is well preserved,
even at very coarse approximations. Because of this desirable property of wavelets,
clustering results typically stabilize at a low resolution.

Level 1

Level 2

Level 3

Level n

Time series 1 Time series 2 Time series k

Points for k-means
at level 2

Points for k-means
at level 3

Fig. 4.2. k-means is performed on each level on the reconstructed data from the Haar wavelet

decomposition, starting with the second level.
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Table 4.3. An outline of the ik-means algorithm

Algorithm ik-means

1. Decide on a value for k.

2. Initialize the k cluster centers (randomly, if necessary).

3. Run the k-means algorithm on the leveli representation of the data

4. Use final centers from leveli as initial centers for leveli+1. This is

achieved by projecting the k centers returned by k-means algorithm

for the 2i space in the 2i+1 space.

5. If none of the N objects changed membership in the last iteration,

exit. Otherwise go to 3.

At the end of each level, we obtain clustering results on the approximation data
used at the given level. We can therefore use that information to seed the clustering
on the subsequent level. In fact, for every level except the starting level (i.e., level 2),
which uses random initial centers, the initial centers are selected on the basis of the
final centers from the previous level. More specifically, the final centers computed at
the end of level i will be used as the initial centers on level i + 1. Since the length
of the data reconstructed from the Haar decomposition doubles as we progress to the
next level, we project the centers computed at the end of level i onto level i + 1 by
doubling each coordinate of the centers. This way, they match the dimensionality of
the points on level i + 1. For example, if one of the final centers at the end of level
2 is <0.5, 1.2>, then the initial center used for this cluster on level 3 is <0.5, 0.5,
1.2, 1.2>. This approach mitigates the dilemma associated with the choice of initial
centers, which is crucial to the quality of clustering results [9]. It also contributes to
the fact that our algorithm often produces better clustering results than the k-means
algorithm. The pseudocode of the algorithm is provided in Table 4.3.

The algorithm achieves the speedup by doing the vast majority of reassignments
(Line 3 in Table 5.1), at the lower resolutions, where the costs of distance calculations
are considerably lower. As we gradually progress to finer resolutions, we already start
with good initial centers. Therefore, the number of iterations r until convergence will
typically be much lower.

The ik-means algorithm allows the user to monitor the quality of clustering results
as the program executes. The user can interrupt the program at any level, or wait until
the execution terminates once it stabilizes. Typically we can consider the process
stabilized if the clustering results do not improve for more than two stages. One
surprising and highly desirable finding from the experimental results (as shown in the
next section) is that even if the program is run to completion (i.e., until the last level,
with full resolution), the total execution time is generally less than that of clustering
on the raw data.

4.3.1 Experimental Evaluation on Time Series

To show that our approach is superior to the k-means algorithm for clustering time
series, we performed a series of experiments on publicly available real data sets.
For completeness, we ran the ik-means algorithm for all levels of approximation,
and recorded the cumulative execution time and clustering accuracy at each level. In
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reality, however, the algorithm stabilizes in early stages and can be terminated much
sooner. We compare the results with that of k-means on the original data. Since both
algorithms start with random initial centers, we execute each algorithm 100 times with
different centers. However, for consistency we ensure that for each execution, both
algorithms are seeded with the same set of initial centers. After each execution, we
compute the error (more details will be provided in Section 4.4.2) and the execution
time on the clustering results. We compute and report the averages at the end of each
experiment. By taking the average, we achieve better objectiveness than taking the
best (minimum), since in reality, we would not have the knowledge of the correct
clustering results, or the “oracle,” to compare against our results (as in the case with
one of our test data sets).

4.3.2 Data Sets and Methodology

We tested on two publicly available, real data sets. The data set cardinalities range
from 1,000 to 8,000. The length of each time series has been set to 512 on one data
set, and 1024 on the other. Each time series is z-normalized to have mean value of 0
and standard deviation of 1.

� JPL: This data set consists of readings from various inertial sensors from Space
Shuttle mission STS-57. The data are particularly appropriate for our experiments
since the use of redundant backup sensors means that some of the data are very
highly correlated. In addition, even sensors that measure orthogonal features (i.e.,
the X- and Y-axis) may become temporarily correlated during a particular maneuver;
for example, a “roll reversal” [7]. Thus, the data have an interesting mixture of dense
and sparse clusters. To generate data sets of increasingly larger cardinalities, we
extracted time series of length 512, at random starting points of each sequence from
the original data pool.

� Heterogeneous: This data set is generated from a mixture of 10 real-time series
data from the UCR Time Series Data Mining Archive [16]. Figure 4.3 shows the
10 time-series we use as seeds. We produced variations of the original patterns by
adding small time warping (2–3% of the series length), and interpolated Gaussian
noise. Gaussian noisy peaks are interpolated using splines to create smooth random
variations. Figure 4.4 shows how data are generated.

In the Heterogeneous data set, we know that the number of clusters (k) is 10. However,
for the JPL data set, we lack this information. Finding k is an open problem for the
k-means algorithm and is out of scope of this chapter. To determine the optimal k for
k-means, we attempt different values of k, ranging from 2 to 8. Nonetheless, our algo-
rithm outperforms the k-means algorithm regardless of k. In this chapter we show only
the results with k equals to 5. Figure 4.5 shows that our algorithm produces the same
results as does the hierarchical clustering algorithm, which is generally more costly.

4.3.3 Error of Clustering Results

In this section we compare the clustering quality for the ik-means and the classic
k-means algorithm.



P1: OTE/SPH P2: OTE

SVNY295-Petrushin November 1, 2006 16:10

66 Jessica Lin et al.

−1

−4

−2

0

2

−2
−6

−4

−2

0

−1

0

1

2

0

1

2

−1

0

1

2

−3

−2

0

1

Burst Earthquake

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

Infrasound Koski ecg

Memory Ocean Power data Random walk

Sunspot Tide

−1

1

0

2

−2

−1

3

−2

0

1

−1

−1

0

2

1

4

2

0

Fig. 4.3. Real-time series data from UCR Time Series Data Mining Archive. We use these

time series as seeds to create our heterogeneous data set.

Since we generated the heterogeneous data sets from a set of given time series
data, we have the knowledge of correct clustering results in advance. In this case, we
can simply compute the clustering accuracy by summing up the number of correctly
classified objects for each cluster c and then dividing by the data set cardinality. This is
done by the use of a confusion matrix. Note the accuracy computed here is equivalent
to “recall,” and the error rate is simply ε = 1 – accuracy.

The error is computed at the end of each level. However, it is worth mentioning
that in reality, the correct clustering information would not be available in advance.
The incorporation of such known results in our error calculation merely serves the
purpose of demonstrating the quality of both algorithms.

For the JPL data set, we do not have prior knowledge of correct clustering infor-
mation (which conforms more closely to real-life cases). Lacking this information,
we cannot use the same evaluation to determine the error.

Since the k-means algorithm seeks to optimize the objective function by minimiz-
ing the sum of squared intracluster errors, we can evaluate the quality of clustering
by using the objective functions. However, since the ik-means algorithm involves
data with smaller dimensionality except for the last level, we have to compute the
objective functions on the raw data, in order to compare with the k-means algorithm.
We show that the objective functions obtained from the ik-means algorithm are better
than those from the k-means algorithm. The results are consistent with the work of
[5], in which the authors show that dimensionality reduction reduces the chances of
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Fig. 4.4. Generation of variations on the heterogeneous data. We produced variation of the

original patterns by adding small time shifting (2–3% of the series length), and interpolated

Gaussian noise. Gaussian noisy peaks are interpolated using splines to create smooth random

variations.

a

a

a

c

c

c

b

b

b

d

d

d

e

e

e

Fig. 4.5. On the left-hand side, we show three instances from each cluster discovered by the

ik-means algorithm. We can visually verify that our algorithm produces intuitive results. On

the right-hand side, we show that hierarchical clustering (using average linkage) discovers the

exact same clusters. However, hierarchical clustering is more costly than our algorithm.
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Fig. 4.6. Error of ik-means algorithm on the heterogeneous data set, presented as fraction of

the error from the k-means algorithm. Our algorithm results in smaller error than the k-means
after the second stage (i.e., four dimensions), and stabilizes typically after the third stage (i.e.,

eight dimensions).

the algorithm being trapped in a local minimum. Furthermore, even with the addi-
tional step of computing the objective functions from the original data, the ik-means
algorithm still takes less time to execute than the k-means algorithm.

In Figures 4.6 and 4.7, we show the errors/objective functions from the ik-means
algorithm as a fraction of those obtained from the k-means algorithm. As we can
see from the plots, our algorithm stabilizes at early stages and consistently results in
smaller error than the classic k-means algorithm.

4.3.4 Running Time

In Figures 4.8 and 4.9, we present the cumulative running time for each level on the
ik-means algorithm as a fraction to the k-means algorithm. The cumulative running

2
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Fig. 4.7. Objective functions of ik-means algorithm on the JPL data set, presented as fraction

of error from the k-means algorithm. Again, our algorithm results in smaller objective functions

(i.e., better clustering results) than the k-means, and stabilizes typically after the second stage

(i.e., four dimensions).
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Fig. 4.8. Cumulative running time for the heterogeneous data set. Our algorithm typically cuts

the running time by half as it does not need to run through all levels to retrieve the best results.

time for any leveli is the total running time from the starting level (level 2) to level i .
In most cases, even if the ik-means algorithm is run to completion, the total running
time is still less than that of the k-means algorithm. We attribute this improvement to
the good choices of initial centers for successive levels after the starting level, since
they result in very few iterations until convergence. Nevertheless, we have already
shown in the previous section that the ik-means algorithm finds the best result in
relatively early stage and does not need to run through all levels.

4.4 ik-means Algorithm vs. k-means Algorithm

In this section (Figs. 4.10 and 4.11), rather than showing the error/objective function
on each level, as in Section 4.4.2, we present only the error/objective function returned
by the ik-means algorithm when it stabilizes or, in the case of JPL data set, outperforms
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Fig. 4.9. Cumulative running time for the JPL data set. Our algorithm typically takes only 30%

of time.
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Fig. 4.10. The ik-means algorithm is highly competitive with the k-means algorithm. The errors

and execution time are significantly smaller.

the k-means algorithm in terms of the objective function. We also present the time
taken for the ik-means algorithm to stabilize. We compare the results with those of
the k-means algorithm. From the figures we can observe that our algorithm achieves
better clustering accuracy at significantly faster response time.

Figure 4.12 shows the average level where the ik-means algorithm stabilizes or,
in the case of JPL, outperforms the k-means algorithm in terms of objective function.
Since the length of the time series data is 1024 in the heterogeneous data set, there
are 11 levels. Note that the JPL data set has only 10 levels since the length of the time
series data is only 512. We skip level 1, in which the data have only one dimension

ik-means Alg vs. k-means Alg (JPL)
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Fig. 4.11. ik-means vs. k-means algorithms in terms of objective function and running time

for JPL data set. Our algorithm outperforms the k-means algorithm. The running time remains

small for all data sizes because the algorithm terminates at very early stages.
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Fig. 4.12. Average level until stabilization. The algorithm generally stabilizes between level 3

and level 6 for heterogeneous data set, and between level 2 and 4 for the JPL data set.

(the average of the time series) and is the same for all sequences, since the data have
been normalized (zero mean). Each level i has 2(i−1) dimensions. From the plot we
can see that our algorithm generally stabilizes at levels 3–6 for the heterogeneous
data set and at levels 2–4 for the JPL data set. In other words, the ik-means algorithm
operates on data with a maximum dimensionality of 32 and 8, respectively, rather
than 1024 and 512.

4.5 Application to Images

In this section we provide preliminary results regarding the applicability of our ap-
proach for images.

Image data can be represented as “time” series by combining different descriptors
into a long series. Although the notion of “time” does not exist here, a series formed by
the descriptors has similar characteristics as time series, namely, high dimensionality
and strong autocorrelation.

The simplest and perhaps the most intuitive descriptor for images is the color. For
each image, a color histogram of length 256 can be extracted from each of the RGB
components. These color histograms are then concatenated to form a series of length
786. This series serves as a “signature” of the image and summarizes the image in
chromatic space. To demonstrate that this representation of images is indeed appro-
priate, we performed a simple test run on a small data set. The data set consists of three
categories of images from the Corel image database: diving, fireworks, and tigers.
Each category contains 20 images. The clustering results are shown in Figure 4.13.

As it shows, most images were clustered correctly regardless of the variety pre-
sented within each category, except for 2: the last two images in the Fireworks cluster
belong to the Tigers cluster. A closer look at the images explains why this happens.
These two misclustered Tiger images have relatively dark background compared to
the rest of images in the same category, and since we used color histograms, it is
understandable that these two images were mistaken as members of the Fireworks
cluster.

The clustering results show that representing images using merely the color his-
togram is generally very effective, as it is invariant to rotation and the exact contents
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Fig. 4.13. Clustering results using RGB color descriptor. Two of the Tiger images were mis-

clustered in the fireworks cluster due to similar color decomposition.
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of the images. However, the misclustering also implies that the color descriptor alone
might not be good enough to capture all the essential characteristics of an image and
could be limited for images with similar color decomposition.

To mitigate this shortcoming, more descriptors such as texture can be used in ad-
dition to the color descriptor. In general, the RGB components are highly correlated
and do not necessarily coincide with the human visual system. We validate this ob-
servation empirically, since our experiments show that a different chromatic model,
HSV, generally results in clusters of better quality.

For texture, we apply Gabor-wavelet filters [23] at various scales and orientations,
which results in an additional vector of size 256. The color and texture information are
concatenated and the final vector of size 1024 is treated as a time series. Therefore,
the method that we proposed in the previous sections can be applied unaltered to
images. Notice that this representation can very easily facilitate a weighted scheme,
where according to the desired matching criteria we may favor the color or the texture
component.

Figure 4.14 shows how the time series is formed from an image. A well-known
observation in the image retrieval community is that the use of large histograms suf-
fers from the “curse of dimensionality” [10]. Our method is therefore particularly
applicable in this scenario, since the wavelet (or any other) decomposition can help
reduce the dimensionality effectively. It should also be noted that the manipulation of

100 200 300 400 500 600 700 800 900 1000
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Green
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saturation

Blue
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value

Texture

Fig. 4.14. An example of the image vector that is extracted for the purposes of our experiments.



P1: OTE/SPH P2: OTE

SVNY295-Petrushin November 1, 2006 16:10

74 Jessica Lin et al.

Table 4.4. Clustering error and running time averaged over 100 runs. Our

method is even more accurate than hierarchical clustering, which requires almost

an order of magnitude more time.

Error Time (s)

Hier. k-means ik-means Hier. k-means ik-means

RGB 0.31 0.37 0.37 50.7 11.18 4.94

HSV 0.36 0.26 0.26 49.8 11.12 6.82
HSV+
TEXTR

0.24 0.25 0.19 55.5 11.33 3.14

HSV+
TEXTR+
good

centers

N/A 0.22 0.17 N/A 8.26 2.89

the image features as time series is perfectly valid. The characteristics of “smooth-
ness” and autocorrelation of the time series are evident here, since adjacent bins in
the histograms have very similar values.

We demonstrate the usefulness of our approach on two scenarios.

4.5.1 Clustering Corel Image Data sets

First, we perform clustering on a subset of images taken from the Corel database. The
data set consists of six clusters, each containing 100 images. The clusters represent
diverse topics: diving, fireworks, tigers, architecture, snow, and stained glass, some of
which have been used in the test-run experiment. This is by no means a large data set;
however, it can very well serve as an indicator of the speed and the accuracy of the
ik-means algorithm. In our case studies, we utilize two descriptors, color and texture,
and compare two color representations: RGB and HSV. We compare the algorithm
with k-means, and with hierarchical clustering using Ward’s linkage method. Our
approach achieves the highest recall rate and is also the fastest method. Since the
performance of k-means greatly depends on the initial choice of centers, we also
provided “good” initial centers by picking one image randomly from each cluster.
Even in this scenario our algorithm was significantly faster and more accurate. The
results, shown in Table 4.4, are generated using the L1 distance metric. Although
we also tested on the Euclidean distance, using L1 metric generally results in better
accuracy for our test cases.

The advantages of our algorithm are more evident with large, disk-based data
sets. To demonstrate, we generate a larger data set from the one we used in Table 4.4,
using the same methodology as described in Figure 4.4. For each image in the data
set, we generate 99 copies with slight variations, resulting in a total of 60,000 images
(including the original images in the data set). Each image is represented as a time
series of length 1024; therefore, it would require almost 500 MB of memory to store
the entire data set. Clustering on large data sets is resource-demanding for k-means,
and one single run of k-means could take more than 100 iterations to converge. In
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addition, although it is common for computers today to be equipped with 1 GB or
more memory, we cannot count on every user to have the sufficient amount of memory
installed. We also need to take into consideration other memory usage required by the
intermediate steps of k-means. Therefore, we will simulate the disk-based clustering
environment by assuming a memory buffer of a fixed size that is smaller than the size
of our data set.

Running k-means on disk-based data sets, however, would require multiple disk
scans, which is undesirable. With ik-means, such concerns are mitigated. We know
from the previous experimental results that ik-means stabilizes on early stages; there-
fore, in most cases we do not need to operate on the fine resolutions. In other words,
we will read in the data at the highest resolution allowed, given the amount of memory
available, and if the algorithm stabilizes on these partial-Haar coefficients, then we
can stop without having to retrieve the remaining data from the disk.

For simplicity, we limit our buffer size to 150 MB, which allows us to read in
as much as 256 coefficients (a 4:1 reduction for time series length of 1024). With
limited memory resources, we would need to use the disk-based k-means algorithm.
However, to make it simple for k-means, we run k-means on the smoothed data with
a reduction ratio of 4:1 (i.e., equivalent to the reconstructed time series at the finest
resolution of the partial-Haar). Although performing data smoothing prior to k-means
aligns more closely to the underlying philosophy of ik-means and is a logical thing
to do, it lacks the flexibility of ik-means in terms of data reduction. Overall, ik-means
still offers the advantages associated with being multi-resolutional.

In fact, our experiment shows that ik-means stabilizes before running on the finest
resolution of the partial-Haar coefficients. Since the data set was generated from six
clusters, intuitively, we could assume that an image has the same cluster label as the
“seed” image that generated it, and that we could evaluate clustering accuracy by
comparing the class labels to the correct labels. However, it is also possible that in
the data generation process, too much noise is introduced such that the generated
image should not belong in the same cluster as the seed image. Though unlikely, as
we control the amount of noise to be added such as limiting time shifting to 2–3% of
the length of time series data, to avoid any bias, we arbitrarily increase the number of
clusters to 10. In this scenario, we compare the projected objective functions instead,
as this is the most intuitive way to evaluate k-means clustering. In both scenarios,
ik-means achieves higher accuracy than k-means. With k = 6, ik-means outperforms
k-means starting at the third level, using only four coefficients which, naturally, also
results in shorter running time. With k = 10, however, ik-means outperforms k-means
at a later level (level 6), thus resulting in longer running time.

4.5.2 Clustering Google Images

For the second paradigm we used a real-world example from the image search feature
of Google. All online image search engines gather information based only on key
words. Therefore, the image query results can be from very diverse disciplines and
have very different content. For example, if one searches for “bass,” the result would be



P1: OTE/SPH P2: OTE

SVNY295-Petrushin November 1, 2006 16:10

76 Jessica Lin et al.

Fig. 4.15. Clustering results on the image query “horse” posed at Google

a mixture of images about “fish” and “musical instruments.” Although in some cases
we might be able to avoid the ambiguity by supplying more descriptive key words,
it is not always trivial to find the right key words that describe exactly the images
we have in mind. In this specific case, a postfiltering of the matches using texture
features can create separate clusters of images, and as a consequence, lead to a more
intuitive presentation of the results. In order for such a postfiltering step to become
a reality, it is obvious that one must utilize an extremely lightweight algorithm. We
posed several queries on Google and we grouped the results into clusters. Here we
present representative results for the word “horse.” The first 20 images are retrieved.
The images are passed on to our algorithm and clustered into two groups. Figure 4.15
presents the results. We can see that there is an obvious separation between the hand-
drawn pictures and the photographic images. These experiments suggest that online
image search could be augmented by a clustering step, in the spirit of the well-known
“Scatter/Gather” framework [12].

The results could be improved by using relevance feedback. In addition, compact
histogram representations, as well as the use of more robust distance functions such
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as the dLog distance proposed in [21], could further boost the performance for the
proposed algorithm.

4.6 Conclusions and Future Work

We have presented an approach to perform incremental clustering at various resolu-
tions, using the Haar wavelet transform. Using k-means as our clustering algorithm,
we reuse the final centers at the end of each resolution as the initial centers for the
next level of approximation. This approach mitigates the dilemma associated with the
choices of initial centers for k-means and significantly improves the execution time
and clustering quality. Our experimental results indicate that this approach yields
faster execution time than the traditional k-means approach, in addition to improv-
ing the clustering quality of the algorithm. The anytime algorithm stabilizes at very
early stages, eliminating the needs to operate on high dimensionality. In addition, the
anytime algorithm allows the user to terminate the program at any stage.

Since image histograms extracted from colors and textures can be suitably treated
as time series, we further demonstrate the efficacy of our algorithm on the image data.
In future work, we plan to examine the possibility of reusing the results (i.e., objective
functions that determine the quality of clustering results) from the previous stages to
eliminate the need to recompute all the distances.
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5. Mining Rare and Frequent Events
in Multi-camera Surveillance Video

Valery A. Petrushin

Summary. This chapter describes a method for unsupervised classification of events in mul-

ticamera indoors surveillance video. This research is a part of the Multiple Sensor Indoor

Surveillance (MSIS) project, which uses 32 webcams that observe an office environment. The

research was inspired by the following practical problem: how automatically classify and visu-

alize a 24-h long video captured by 32 cameras? The self-organizing map (SOM) approach is

applied to event data for clustering and visualization. One-level and two-level SOM clustering

are used. A tool for browsing results allows exploring units of the SOM maps at different levels

of hierarchy, clusters of units, and distances between units in 3D space. A special technique

has been developed to visualize rare events.

5.1 Introduction

The rapidly increasing number of video cameras in public places and business fa-
cilities, such as airports, streets, highways, parking lots, shopping malls, hospitals,
hotels, and governmental buildings can create many opportunities for public safety
and business applications. Such applications range from surveillance for threat detec-
tion in airports, schools and shopping malls, monitoring highways, parking lots and
streets, to customer tracking in a bank or in a store for improving product displays and
preventing thefts, to detecting unusual events in a hospital, and monitoring elderly
people at home, etc. These applications require the ability automatically detecting
and classifying events by analyzing video or imagery data.

In spite of that video surveillance has been in use for decades, the development
of systems that can automatically detect and classify events is an active research
area. Many papers have been published in recent years. In most of them specific
classifiers are developed that allow recognizing objects such as people and vehicles
and tracking them [1–3] or recognizing relationships between objects (e.g., a person
standing at an ATM machine) and actions (e.g., a person picks up a cup) [4]. The
others propose general approaches for event identification using clustering. In [5] the
authors segment raw surveillance video into sequences of frames that have motion,
count the proportion of foreground pixels for segments of various lengths, and use a
multilevel hierarchical clustering to group the segments. The authors also propose a

80
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measure of abnormality for a segment that is a relative difference between average
distance for elements of the cluster and average distance from the sequence to its
nearest neighbors. The weaknesses of the approach are as follows.

� Segments of higher motion often are subsequences of segments of lower average
motion and when they are clustered the subsequences of the same event belong to
different clusters.

� Location and direction of movement of the objects are not taken into account.
� The other features, such as color, texture, and shape, which could be useful for

distinguishing events, are not taken into account.

The authors of [6] describe an approach that uses a 2D foreground pixels’ his-
togram and color histogram as features for each frame. The features are mapped
into 500 feature prototypes using the vector quantization technique. A surveillance
video is represented by a number of short (4 s) overlapping video segments. The rela-
tionship among video segments and their features and among features themselves is
represented by a graph in which edges connect the segments to features and features
to features. The weights on the edges reflect how many times each feature occurred
in each video segment, and similarity among features. To visualize the graph, it is
embedded in a 3D space using the spectral graph method. To categorize the video
segments, the authors use the k-means clustering on the video segments’ projections.
The larger clusters are defined as usual events, but small and more isolated clusters as
unusual events. A new video segment can be classified by embedding it into common
space and applying k-nearest neighbor classifier. The advantages of this approach are
the following:

� Taking into account similarity among features.
� Attractive visualization of results.

But the disadvantages are

� High computational complexity of the graph embedding method.
� Dependence of the results on the length of video segments.

Developing techniques for visualization of large amount of data always attracted
attention of data mining researchers. Visualization is an indispensable part of the data
exploration process. Finding efficient algorithms for event detection and summariza-
tion, skimming and browsing large video and audio databases are the major topics of
multimedia data mining [7, 8]. Many visualization techniques have been developed
in traditional data mining. They use clustering that follows by a mapping into 2D or
3D space. For example, using the principal component analysis the data mapped into
principal component space and then visualized using two or three first components.
Another well-known and widely used approach is Self-Organizing Maps (SOM) or
Kohonen Neural Networks [9]. This approach has been applied for analysis and vi-
sualization of variety of economical, financial, scientific, and manufacturing data
sets [10]. From the viewpoint of our research the most interesting application is the
PicSOM, which is a content-based interactive image retrieval system [11]. It clusters
images using separately color, texture, and shape features. A user chooses what kind
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of features he would like to use and picks up a set of images that are similar to his
query. The system uses SOM maps to select new images and presents them back to
the user. The feature SOM maps highlight the areas on the map that correspond to the
features of the set of currently selected images. The interaction continues until the
user reaches his goal.

Our research described below is devoted to creating a method for unsupervised
classification of events in multicamera indoors surveillance video and visualization
of results. It is a part of the Multiple Sensor Indoor Surveillance project that is
described in the next section. Then we describe sequentially our data collection and
preprocessing procedure, one- and two-level clustering using SOM, techniques for
detecting rare events, an approach to classification of new events using Gaussian mix-
ture models (GMM) that are derived from SOM map, and a tool for visualization and
browsing results. Finally, we summarize the results and speculate on the future work.

5.2 Multiple Sensor Indoor Surveillance Project

This research is a part of the Multiple Sensor Indoor Surveillance (MSIS) project.
The backbone of the project consists of 32 AXIS-2100 webcams, a PTZ camera
with infrared mode, a fingerprint reader, and an infrared badge ID system that has
91 readers attached to the ceiling. All this equipment is sensing an office floor for
Accenture Technology Labs. The webcams and infrared badge system cover two
entrances, seven laboratories and demonstration rooms, two meeting rooms, four
major hallways, four open-space cube areas, two discussion areas, and an elevator
waiting hall. Some areas overlap with up to four cameras. The total area covered is
about 18,000 ft2 (1,670 m2). The fingerprint reader is installed at the entrance and
allows matching an employee with his or her visual representation. The backbone
architecture also includes several computers, with each computer receiving signals
from 3–4 webcams, detecting “events” and recording the images for that event in JPEG
format. The event is defined as any movement in the camera’s field of view. The signal
sampling frequency is not stable and on average is about 3 frames per second. The
computer also creates an event record in an SQL database. Events detected by the
infrared badge ID system and the results of face recognition using PTZ cameras go to
the other database. The event databases serve as a common repository for both people
who are doing manual search of events and automatic analysis.

The objectives of the MSIS project are to

� Create a realistic multisensor indoor surveillance environment;
� Create an around-the-clock working surveillance system that accumulates data in

a database for three consecutive days and has a GUI for search and browsing; and
� Use this surveillance system as a base for developing more advanced event analysis

algorithms, such as people recognition and tracking, using collaborating agents,
and domain knowledge.

The following analyses and prototypes have been developed or are planned to be
developed in the nearest future:
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� Searching and browsing of the Event Repository database using a Web browser.
� Creating an event classification and clustering system.
� Counting how many people are on the floor.
� Creating a people localization system that is based on evidence from multiple

sensors and domain knowledge (see Chapter 21 in this book for details).
� Creating an awareness map that shows a person’s location and what he or she is

doing at any given moment.
� Creating a real-time people tracking system that gives an optimal view of a person

based on prediction of the person’s behavior.
� Creating a system that recognizes people at a particular location and interacts with

them via voice messaging.

The below-described research was inspired by the following practical problem: how
automatically classify and visualize a 24-h video captured by 32 cameras?

First we implemented a Web-based tool that allows users searching and browsing
the Event Repository by specifying the time interval and a set of cameras of interest.
The tool’s output consists of a sequence of events sorted by time or by camera and
time. Each event is represented by a key frame and has links to the event’s sequence
of frames. Using the tool, a user can quickly sort out events for a time interval that is
as short as 1–2 h, but can be overloaded with a large number of events that occurred
during 24 h, which counts from 300 to 800 events per camera. The tool does not give
the user a “big picture” and is useless for searching for rare events. These reasons
motivated our research for unsupervised classification of events.

5.3 Data Collection and Preprocessing

Our raw data are JPEG images of size 640 by 480 pixels that are captured by AXIS-
2100 webcams at the rate 2–6 Hz. Each image has a time stamp in seconds passed
from the midnight of the day under consideration. To synchronize images’ time stamps
taken by different computers, we used an atomic clock program to set up time on each
computer. The background subtraction algorithm is applied to each image to extract
foreground pixels. We use two approaches for background modeling—an adaptive
single frame selection and estimating median value for each pixel using a pool of recent
images. After subtracting the background, morphological operations are applied to
remove noise. Then the following features are extracted from the image:

� Motion features that characterize the foreground pixels’ distribution (64 values).
The foreground pixels’ distribution is calculated on an 8-by-8 grid, and the value
for each cell of the grid is the number of foreground pixels in the cell divided by
the cell’s area.

� Color histogram (8 bins) of the foreground pixels in the RGB color space (3 ∗ 8 = 24
values).

Then the above data are integrated by tick and by event. The tick is a time interval
which it is set up to 1 s in our case. The notion of tick and its value is important
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Fig. 5.1. Summary frame for an event.

because we deal with multiple nonsynchronized cameras with overlapping fields of
view. Ticks allow loosely—up to the tick—synchronizing cameras’ data. They also
allow regularizing frame time series taken with varying sampling rates. The data
integration by tick and event consists of averaging motion and color data. For visual
representation of a tick or an event, a “summary” frame is created. It accumulates
all foreground pixels of all images from the tick/event into one image. The summary
frames serve as key frames for representing ticks/events. Figure 5.1 gives an example
of a summary frame of an event.

Before presenting details of our approach for estimating an event boundaries, let
us consider what kind of events we can expect to find in an indoor office environment.
A camera can watch a hallway, a meeting room, a working space such as cubicles or
laboratories, a recreational area such as a coffee room, or a multipurpose area that is
used differently at different time of the day.

Let us assume that we are using a percentage of foreground pixels F in the image
as an integral measure of motion. If the camera watches a hallway, then most events
present people walking along the hallway, getting in and out of offices, or standing
and talking to each other. Most events last for seconds and some for several minutes.
In this case the plot of F over time looks as number of peaks that represent short
events and some trapezoidal “bumps” that correspond to longer events (Figure 5.2a).
In Figures 5.2 and 5.3 the x-axis presents time in seconds and y-axis presents the
average percentage of foreground pixels (F-measure) during a tick. Some bumps can
have peaks that correspond to combinations of transient and long-term events. If a
camera watches a meeting room, then we have long periods of time when the room
is empty (F = 0) that interchange with periods when a meeting is in process. The
latter has a trapezoidal F-plot with a long base and some volatility that corresponds to
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Fig. 5.2. Foreground pixels patterns for cameras that watching different locations.

people movement during the meeting and some small peaks that correspond to events
when participants arriving and leaving the room (Figure 5.2b). In case of a recreational
area camera, the events are typically longer than for a hallway but much shorter than
for a meeting room camera. They correspond to events when people getting into the
area for drinking coffee, having lunch, reading, talking on their mobile phones, or
talking to each other.

If a camera watches a busy working area such as cubicles or laboratories, then we
have such events as people arriving at and leaving their working places, sitting down
and standing up, moving and communicating with each other. The F-plot for such
camera never goes to zero at working hours and looks like a long volatile meeting
(Figure 5.2c).

Having watched F-plots for several cameras, we came to the conclusion that,
first, F-measure can be used for event boundaries estimation, and, second, the notion
of event is a relative one. For example, on the one hand, the whole meeting can be
considered as an event, but, on the other hand, it may be considered as a sequence
of events, such as, people arriving for the meeting, participating in the meeting,
and leaving the room. Each of these events can be divided into shorter events down
to a noticeable movement. These observations encouraged us to use the wavelet
decomposition of F-signal to detect events at different levels. We used the wavelet
decomposition of levels from 2 to 5 with Haar wavelet for calculating approximation
and details. Then we applied a threshold to approximation signal that slightly exceeds
the noise level to find the boundaries of major events such as meetings (mega-events),
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Fig. 5.3. Event boundaries detection using Haar wavelets.

and another threshold to the absolute value of highest detail signal to find internal
events (micro-events). Figure 5.3 presents the results of event detection for a signal
of length 1024 s using wavelet decomposition of level 3. The top plot presents the
original F-signal; the middle plot is its level 3 approximation, and the bottom plot
presents its level 3 details. The boundaries of macro- and micro-events presented in
the lower parts of the middle and bottom plots correspondingly. The comparison of
automatic extraction of micro-events boundaries with manual extraction gives a high
agreement coefficient (75–90%) but people tend to detect less events, but the events
are more meaningful. The boundaries of micro events are used for data integration.

After integrating data by tick and by event, we have two sets of data for each
camera. The tick-level data set record consists of the following elements: tick value
from the beginning of the day, names of the first and last frames of the tick, and
integrated motion and color data. The event-level data set record consists of a unique
event identification number, first and last tick values, names of the first and last frames
of the event, and integrated motion and color data. We used both of these data sets
for unsupervised classification and visualization presented below.

5.4 Unsupervised Learning Using Self-Organizing Maps

We applied the self-organizing map approach to tick/event data for clustering and
visualization. We use 2D rectangular maps with hexagonal elements and Gaussian
neighborhood kernels.

5.4.1 One-Level Clustering Using SOM

In one-level clustering approach we use both motion and color data to build the map.
For creating maps we used the SOM Toolbox for MATLAB developed at the Helsinki
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Fig. 5.4. Visualization tool displays a self-organizing map for event data.

University of Technology [12]. The toolbox allows displaying maps in many ways
varying the units’ sizes and colors. In our experiments we found that the size of maps
for tick data can reach 1400 units (70 by 20) and for event data—about 250 units
(25 by 10). Figure 5.4 presents the map for event data of a camera that observes a
multipurpose area. It presents 717 events on 22-by-6 lattice (132 units). The unit’s
size reflects the number of events attracted by this unit (the number of hits). The unit’s
size is calculated using the formula (5.1).

s(u) = 0.5 · (1 + hits(u)

max
u

hits(u)
) (5.1)

where s(u) is the size of unit u, and hits(u) is the number of data points attracted by
the unit u. It means that if a unit has at least one hit then its size is not less than 0.5,
and the size of the unit is proportional to the number of hits. The units with zero hits
are not displayed. The units’ colors show the topological similarity of the prototype
vectors.

A visualization tool that is described below allows exploring the contents of each
unit. However, the number of units can be large that makes unit browsing very labori-
ous. Next step is to apply the k-means algorithm for clustering map units (prototype
vectors) [13]. As the number of units is about one order smaller than the number of raw
data, we can run the k-means algorithm with different number of intended clusters, sort
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the results according to their Davies–Bouldin indexes [14], and allow users browsing
clusters of units. The Davies–Bouldin index of a partitioning P = (C1, C2, . . . , CL )
is specified by the formula (5.2),

DBI(P) = 1

L

L∑
i=1

max
i �= j

{
S(Ci ) + S(C j )

D(Ci , C j )

}
(5.2)

where Ci , i = 1, L are clusters, S(C) =
∑N

k=1 ‖xk − c‖
N

is the within-cluster distance

of the cluster C , which has elements xk, k = 1, N and the centroid c = 1
N

∑N
k=1 xk ,

and D(Ci , C j ) = ∥∥ci − c j

∥∥ is the distance between clusters’ centroids (between-
cluster distance).

We do k-means clustering of units for the number of clusters from 2 to 15 for event
data and from 2 to 20 for tick data. Then the visualization tool allows the user to pick
up a clustering from a menu where each clustering is shown with its Davies–Bouldin
index. Figure 5.5 presents the clustered map for the event data of the same camera and
a legend that shows the number of events in each cluster. The centroid unit of each
cluster is presented in complementary color. When the number of clusters is large,
some clusters may consists of several transitional units that have no raw data (events
or ticks) associated with them. The visualization tool allows browsing events or ticks
by cluster.

Fig. 5.5. Visualization tool displays the results of clustering of SOM units for event data.
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5.4.2 Two-Level Clustering Using SOM

Our raw data have two kinds of features: motion and color features. In two-level
clustering we explore these features consequentially. On the top level, only motion
features are used to create the main map. Then we use k-means clustering for the map
units as we described above. After this, for each obtained cluster we build a SOM
map using color features. Such separation of features allows differentiating more
precisely spatial events and easier detecting unusual events. In indoor environment,
where most of moving objects are people, who change their clothes every day, the
variance of color features is higher than the variance of motion features. Separating
motion features allows collecting them over longer periods and creating more robust
classifiers. To create a classifier, we accumulated motion data during a week, built an
SOM map, and applied k-means clustering to its units. The whole SOM map M can
be considered as a Gaussian Mixture Model (GMM) [15] with the probability density
function represented by (5.3).

f (x |M) =
N∑

i=1

wi · fi (x | λi ) and
N∑

i=1

wi = 1 (5.3)

where f (· | λk)is the probability density function for model λk , λk = N (μk, �k)
is a Gaussian model for k-th unit with mean μk and covariance matrix �k , N is
the number of units in the map. It is often assumed that the covariance matrix is
diagonal.

Each unit of the map has a Gaussian kernel associated with it and a weight wi ,
which is proportional to the number of data points attracted by the unit (the number
of hits for this unit). The log-likelihood of a data point x to belongs to the map is
estimated using Equation (5.4).

log L(x | M) = log

(
N∑

i=1

wi · f (x | λi )

)
(5.4)

On the other hand, for a partitioning P = (C1, C2, . . . , CL ) each cluster can be
viewed as a GMM with the log-likelihood function represented by (5.5).

log L(x | Ck) = log

(∑
i∈Ck

wi · f (x |λi )

)
(5.5)

A new piece of data can be classified by calculating likelihood using GMM
associated with each cluster and assigning the new data to the cluster with maximal
likelihood (5.6). The same procedure can be applied to color features. Combining
motion-based classifiers on top level with color-based classifiers on the second level,
we obtain a hierarchical classifier.

Ck∗ = arg max
Ck

{log L(x |Ck)} (5.6)
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5.4.3 Finding Unusual Events

In some cases, finding unusual events is of special interest. But what we should
count as an unusual event is often uncertain and requires additional consideration. An
event can be unusual because it happened at unusual time or at unusual place or had
unusual appearance. For example, finding a person working in his office at midnight
is an unusual event, but the same event happened at noon is not. A person standing on
a table would be considered as an unusual event in most office environments. Many
people wearing clothes of the same color would be considered as an unusual event
unless everybody is wearing a uniform. Everybody agrees that an unusual event is
a rare event at given time and space point. But a rare event may not be an unusual
one. For example, a person sitting in his office on weekend could be a rare but not
surprising event.

After thoughtful deliberation, we decided to use computers for finding rare and
frequent events leaving humans to decide how unusual or usual they are. In our
research we distinguish between local rare/frequent events—these are events that
happened during one day—and global rare/frequent events—those that happened
during longer period of time and the surveillance system accumulated data about
these events. We also distinguish between events that happened during regular working
hours and out of them.

For finding local rare events, we are using an automatic procedure that indicates
areas of the SOM map that contain potential rare events. This procedure assigns 1 of
13 labels for each unit of SOM map based on the number of hits attracted by the unit
and the distances from the unit to its neighbors using Equation (5.7),

Rnm = {u : hits(u) ≤ Hn ∩ min
v∈Nb(u)

{D(u, v)} ≥ Dm} (5.7)

where Hn = {5, 10, 20, 40,∗ }is the list of hit levels (∗ stands for “any”), Dm =
{0.9, 0.75, 0.5} · max

u,v∈M
(u, v) is list of distance levels, Nb(u) is a set of neighbors of

the unit u, and hits(u) is the number of hits of unit u.
For visualizing local rare events, we use two approaches. The first is to display

the SOM map with a particular color assigned to each Rnm class. The color spans over
different shades of red–orange–yellow, depending on the n–m combination. The map
allows the user identify and explore areas that have high potential to have rare events.
The second approach is a 3D surface that shows distances between units of the SOM
map and indicates how many data points (hits) belong to each unit using markers with
sizes that are proportional to the number of hits. Figure 5.6 shows the 3D visualization
for event data. A user can rotate the axes searching manually for “highlanders”—small
unit markers that are located on the top of peaks or for “isolated villages” which
are sets of small unit markers that are located in closed “mountain valleys”. Using
the combination of (semi-)automatic and manual approaches allows the user finding
promptly local rare events.

For detecting global rare events, the following procedure is proposed. First, the
GMM classifier is applied to a new event/tick motion data. If it gives a high probability
for a small cluster, then the system declares that a rare event of particular type is found.
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Fig. 5.6. Visualization of distances between units for searching for rare events.

If the classifier gets low probabilities for all clusters then the system indicates that
it is a new (and rare) spatial event. Such events are accumulated and can be used
for building a new version of GMM classifier. In case when the event belongs to a
moderate or frequent event cluster, the system applies the corresponding color-based
GMM classifier to detect rare or new events regarding their color features.

5.5 Visualization Tool

The above-described techniques have been integrated into an event visualization tool.
Figures 5.4 and 5.5 show snapshots of the tool. The tool’s GUI consists of four
panels—Data, Map, Image Browsers, and Unit/Cluster Summary. Using the Data
panel, the user selects and loads data. Currently each camera has a separate file for its
tick and event data. The file contains preprocessed raw data and SOM data for chosen
SOM architecture—one- or two-level SOM map. The user selects the desired map
from a menu. The map is displayed in the Map panel or in a separate window.

The Map panel displays the current SOM map, which could be the top-level map
that shows color coded units with unit sizes reflecting the number of hits, a cluster
map of different number of clusters with color-coded units, or a map for indicating
potential rare events. The 3D surface that presents distances between units and the
number of hits in each unit is displayed in a separate window (see Figure 5.6). The
user can rotate the 3D surface for hunting for local rare events.

When the user clicks on a unit or a cluster of units on the SOM map, the contents of
the unit or cluster is displayed in the Unit/Cluster Summary panel. This panel presents
information about the current item (unit or cluster). It shows the number of events
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and/or ticks in the current item, the name of image displayed in the Image Browser
panel and its time. It also has two plots. The left bar plot shows the distribution of
event or tick data in time. The right plot shows all data (ticks or events) that are related
to the current item. A small square corresponds to each piece of data. The color of
the square indicates the time interval that the piece of data belongs to. When the
user clicks on a square, the corresponding summary frame is displayed in the Image
Browser panel.

The Image Browser panel displays the visual information related to the current
selected tick or event in the Unit/Cluster Summary panel. Using the browser’s control
buttons, the user can watch the first or last frame of the tick/event, go through the
tick/event frame by frame forward and backward, and watch a slide show going in
both directions. The speed of the slide show is controlled by the speed slider. Clicking
on the image brings the current frame in full size into a separate window allowing the
user to see details. This feature proved to be very useful for exploring busy summary
images.

5.6 Summary

We described an approach to unsupervised classification and visualization of surveil-
lance data captured by multiple cameras. The approach is based on self-organizing
maps and enables us to efficiently search for rare and frequent events. It also allows
us creating robust classifiers to identify incoming events in real time. A pilot experi-
ment with several volunteers who used the visualization tool for browsing events and
searching for rare events showed both its high efficiency and positive feedback about
its GUI.

Although we applied this approach for indoor surveillance in office environment,
we believe that it is applicable in the larger context of creating robust and scalable
systems that can classify and visualize data for any surveillance environment. The real
bottleneck of the approach is not creating SOM maps (it takes just several minutes to
create a map for 24-h tick data with 86400 records), but feature extraction and data
aggregation.

In the future we plan to extend our approach to visualize data of a set of cameras
with overlapping fields of view, embed the GMM-based classifier into visualization
tool for detecting global rare events, and improve the graphical user interface.
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6. Density-Based Data Analysis and
Similarity Search

Stefan Brecheisen, Hans-Peter Kriegel, Peer Kröger, Martin Pfeifle,
Matthias Schubert, and Arthur Zimek

Summary. Similarity search in database systems is becoming an increasingly important
task in modern application domains such as multimedia, molecular biology, medical imaging,
computer-aided engineering, marketing and purchasing assistance as well as many others.
Furthermore, the feature transformations and distance measures used in similarity search build
the foundation of sophisticated data analysis and mining techniques. In this chapter, we show
how visualizing cluster hierarchies describing a database of objects can aid the user in the time-
consuming task to find similar objects and discover interesting patterns. We present related
work and explain its shortcomings that led to the development of our new methods. On the
basis of reachability plots, we introduce methods for visually exploring a data set in multiple
representations and comparing multiple similarity models. Furthermore, we present a new
method for automatically extracting cluster hierarchies from a given reachability plot that
allows a user to browse the database for similarity search. We integrated our new method in
a prototype that serves two purposes, namely visual data analysis and a new way of object
retrieval called navigational similarity search.

6.1 Introduction

In recent years, an increasing number of database applications have emerged for which
efficient and effective similarity search and data analysis is substantial. Important ap-
plication areas are multimedia, medical imaging, molecular biology, computer-aided
engineering, marketing and purchasing assistance, etc. [1–8]. In these applications,
there usually exist various feature representations and similarity models that can
be used to retrieve similar data objects or derive interesting patterns from a given
database. Hierarchical clustering was shown to be effective for evaluating similarity
models [9,10]. Especially, the reachability plot generated by OPTICS [11] is suitable
for assessing the quality of similarity models and compare the meaning of different
representations to each other. To further extract patterns and allow new methods of
similarity search, cluster extraction algorithms can extract cluster hierarchies repre-
senting a concrete categorization of all data objects.

In this chapter, we present methods that employ hierarchical clustering and visual
data mining techniques to fulfill various tasks for comparing and evaluating distance

94
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models and feature extractions methods. Furthermore, we introduce an algorithm for
automatically detecting hierarchical clusters and use this hierarchy for navigational
similarity search. In ordinary similarity search systems, a user is usually obliged to
provide an example query object to which the retrieved database objects should be
similar. In contrast, navigational similarity search allows a user to browse the database
using the extracted cluster hierarchy to navigate between groups of similar objects. In
order to evaluate our ideas, we developed a research prototype. Its basic functionality
is to display the cluster structure of a given data set and to allow navigational simi-
larity search. Furthermore, we integrated two components called VICO and CLUSS.
VICO (VIsually Connected Object Orderings) is a tool for evaluating and compar-
ing feature representations and similarity models. The idea of VICO is to compare
multiple reachabilty plots of one and the same data set. CLUSS (CLUster Hierarchies
for Similarity Search) is an alternative hierarchical clustering algorithm that was es-
pecially developed to generate cluster hierarchies being well suited for navigational
similarity search.

To sum up, the main topics of this chapter are as follows:

� We describe methods for evaluating data representations and similarity models.
Furthermore, we sketch possibilities to visually compare these representations and
models.

� We present an alternative approach to the retrieval of similar objects, called
navigational similarity search. Unlike conventional similarity queries, the user
does not need to provide a query object but can interactively browse the data
set.

� We introduce a new cluster recognition algorithm for the reachability plots generated
by OPTICS. This algorithm generalizes all the other known cluster recognition al-
gorithms for reachability plots. Although our new algorithm does not need a sophis-
ticated and extensive parameter setting, it outperforms the other cluster recognition
algorithms w.r.t. quality and number of recognized clusters and subclusters. The
derived cluster hierarchy enables us to employ OPTICS for navigational similarity
search.

� We introduce an alternative method for generating cluster hierarchies that provides
a more intuitive access to the database for navigational similarity search. The ad-
vantage of this method is that each of the derived clusters is described by a set
of well-selected representative objects giving the user a better impression of the
objects contained in the cluster.

The remainder of the chapter is organized as follows: We briefly introduce the
clustering algorithm OPTICS in Section 6.2. In Section 6.3, we present the main appli-
cation areas of our new methods for data analysis and navigational similarity search.
Section 6.4 introduces a novel algorithm for extracting cluster hierarchies, together
with an experimental evaluation. An alternative way to derive cluster hierarchies for
navigational similarity search is presented in Section 6.5. The chapter concludes in
Section 6.6 with a short summary.
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6.2 Hierarchical Clustering

In the following, we will briefly review the hierarchical density-based clustering
algorithm OPTICS, which is the foundation of the majority of the methods described
in this chapter.

The key idea of density-based clustering is that for each object o of a cluster the
neighborhood Nε(o) of a given radius ε has to contain at least a minimum number
MinPts of objects. Using the density-based hierarchical clustering algorithm OPTICS
yields several advantages due to the following reasons:

� OPTICS is—in contrast to most other algorithms—relatively insensitive to its two
input parameters, ε and MinPts. The authors in [11] state that the input parameters
just have to be large enough to produce good results.

� OPTICS is a hierarchical clustering method which yields more information about
the cluster structure than a method that computes a flat partitioning of the data
(e.g., k-means [12]).

� There exists a very efficient variant of the OPTICS algorithm, which is based on
a sophisticated data compression technique called “Data Bubbles” [13], where we
have to trade only very little quality of the clustering result for a great increase in
performance.

� There exists an efficient incremental version [14] of the OPTICS algorithm.

OPTICS emerges from the algorithm DBSCAN [15], which computes a flat par-
titioning of the data. The clustering notion underlying DBSCAN is that of density-
connected sets (cf. [15] for more details). It is assumed that there is a metric distance
function on the objects in the database (e.g., one of the L p-norms for a database of
feature vectors).

In contrast to DBSCAN, OPTICS does not assign cluster memberships but com-
putes an ordering in which the objects are processed and additionally generates the
information, which would be used by an extended DBSCAN algorithm to assign
cluster memberships. This information consists of only two values for each object,
the core distance and the reachability distance.

Definition 1 (core distance). Let o ∈ DB, MinPts ∈ N, ε ∈ R, and MinPts-dist(o)
be the distance from o to its MinPts-nearest neighbor. The core distance of o w.r.t. ε

and MinPts is defined as follows:

Core-Dist(o) :=
{∞ if |Nε(o)| < MinPts

MinPts-dist(o) otherwise.

Definition 2 (reachability distance). Let o ∈ DB, MinPts ∈ N and ε ∈ R. The
reachability distance of o w.r.t. ε and MinPts from an object p ∈ DB is defined
as follows:

Reach-Dist(p, o) := max (Core-Dist(p), distance(p, o)).
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Fig. 6.1. Illustration of core level and reachability distance.

Figure 6.1 illustrates both concepts: The reachability distance of p from o equals
to the core distance of o and the reachability distance of q from o equals to the distance
between q and o.

The original output of OPTICS is an ordering of the objects, a so called cluster
ordering:

Definition 3 (cluster ordering). Let MinPts ∈ N, ε ∈ R, and CO be a totally ordered
permutation of the database objects. Each o ∈ D has additional attributes o.P, o.C
and o.R, where o.P ∈ {1, . . . , |CO|} symbolizes the position of o in CO. We call CO
a cluster ordering w.r.t. ε and MinPts if the following three conditions hold:

(1) ∀p ∈ CO : p.C = Core-Dist(p)
(2) ∀o, x, y ∈ CO :

o.P < x .P ∧ x .P < y.P ⇒ Reach-Dist(o, x) ≤ Reach-Dist(o, y)
(3) ∀p, o ∈ CO : R(p) = min{Reach-Dist(o, p) | o.P < p.P}, where min ∅ = ∞.

Intuitively, Condition (2) states that the order is built on selecting at each position
i in CO that object o having the minimum reachability to any object before i . o.C
symbolizes the core distance of an object o in CO whereas o.R is the reachability
distance assigned to object o during the generation of CO. We call o.R the reachablity
of object o throughout the chapter. Note that o.R is only well-defined in the context
of a cluster ordering.

The cluster structure can be visualized through so-called reachability plots, which
are 2D plots generated as follows: the clustered objects are ordered along the x-axis
according to the cluster ordering computed by OPTICS and the reachabilities assigned
to each object are plotted along the abscissa. An example reachability plot is depicted
in Figure 6.2. Valleys in this plot indicate clusters: objects having a small reachability
value are closer and thus more similar to their predecessor objects than objects having
a higher reachability value.

The reachability plot generated by OPTICS can be cut at any level εcut parallel to
the abscissa. It represents the density-based clusters according to the density threshold
εcut: A consecutive subsequence of objects having a smaller reachability value than
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Fig. 6.2. Reachability plot (right) computed by OPTICS for a sample 2-D data set (left).

εcut belongs to the same cluster. An example is presented in Figure 6.2: For a cut at
the level ε1 we find two clusters denoted as A and B. Compared to this clustering,
a cut at level ε2 would yield three clusters. The cluster A is split into two smaller
clusters denoted by A1 and A2 and cluster B decreased its size. Usually, for evaluation
purposes, a good value for εcut would yield as many clusters as possible.

6.3 Application Ranges

The introduced methods combine techniques from hierarchical clustering and data
visualization for two main purposes, data analysis and similarity search. In the fol-
lowing, we will propose several applications in both areas for which our introduced
methods are very useful.

6.3.1 Data Analysis

The data analysis part of our prototype is called VICO. It allows a user to cluster data
objects in varying representations and using varying similarity models. The main pur-
pose of VICO is to compare different feature spaces that describe the same set of data.
For this comparison, VICO relies on the interactive visual exploration of reachability
plots. Therefore, VICO displays any available view on a set of data objects as adjacent
reachability plots and allows comparisons between the local neighborhoods of each
object. Figure 6.3 displays the main window of VICO. The left side of the window
contains a so-called tree control that contains a subtree for each view of the data set.
In each subtree, the keys are ordered w.r.t. the cluster order of the corresponding view.
The tree control allows a user to directly search for individual data objects. In addition
to the object keys displayed in the tree control, VICO displays the reachability plot
of each view of the data set.

Since valleys in the reachability plot represent clusters in the underlying represen-
tation, the user gets an instant impression of the richness of the cluster structure in each
representation. However, to explore the relationships between the representations, we
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Fig. 6.3. VICO displaying OPTICS plots of multirepresented data.

need to find out whether objects that are clustered in one representation are also
similar in the other representation. To achieve this type of comparison, VICO allows
the user to select any data object in any reachability plot or the tree control. By se-
lecting a set of objects in one view, the objects are highlighted in any other view
as well. For example, if the user looks at the reachability plot in one representation
and selects a cluster within this plot, the corresponding object keys are highlighted
in the tree control and identify the objects that are contained in the cluster. Let us
note that it is possible to visualize the selected objects as well, as long as there is a
viewable object representation. In addition to the information about which objects
are clustered together, the set of objects is highlighted in the reachability plots of the
other representations as well. Thus, we can easily decide whether the objects in one
representation are placed within a cluster in another representation as well or if they
are spread among different clusters or are part of the noise. If there exist contradicting
reachability plots for the same set of data objects, it is interesting to know which of
these representations is closer to the desired notion of similarity. Thus, VICO allows
the user to label data objects w.r.t. predefined class values. The different class values
for the objects are displayed by different colors in the reachability plot. Thus, a reach-
ability plot of a data space that matches the user’s notion of similarity should display
clusters containing objects of the same color. Figure 6.3 displays a comparison of
two feature spaces for an image data set. Each image is labelled w.r.t. the displayed
motive.

Another feature of VICO is the ability to handle multiinstance objects. In a multi-
instance representation, one data object is given by a set of separated feature objects.
An example are CAD parts that can be decomposed to a set of spatial primitives, which
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can be represented by a single feature vector. This way, the complete CAD part is
represented by a set of feature vectors, which can be compared by a variety of distance
functions. To find out which instances are responsible for clusters of multiinstance
objects, VICO allows us to cluster the instances without considering the multiinstance
object they belong to. Comparing this instance plot with the plot derived on the com-
plete multiinstance objects allows us to analyze which instance clusters are typical
for the clusters on the complete multiinstance object. Thus, for multiinstance settings,
VICO highlights all instances belonging to some selected multiinstance object. To
conclude, VICO allows even nonexpert users to evaluate similarity models, directly
compares different similarity models to each other, and helps exploring the connec-
tion between multiinstance distance functions and the underlying distance metrics in
the feature space of instances.

6.3.2 Navigational Similarity Search

For similarity search, the idea of our system is to provide navigational access to a
database. This way, it is possible to browse a database of objects in an explorer-
like application, instead of posing separated similarity queries. A main problem of
these similarity queries is that a user always has to provide a query object to which
the retrieved objects should be as similar as possible. However, in many application
scenarios finding a query object is not easy. For example, an engineer querying a CAD
database would have to specify the 3D shape of a CAD part before finding similar
parts. Sketching more complicated parts might cause a considerable effort. Thus,
similarity queries are often quite time-consuming. The alternative idea of navigational
similarity search offers an easier way to retrieve the desired objects. The idea is to use
an extracted hierarchy of clusters as a navigation tree. The root represents the complete
data set. Each node in the tree represents a subcluster consisting of a subset of data
objects for which the elements are more similar to each other than in the father cluster.
The more specialized a cluster is the more similar its members are to each other. To
describe the members of a cluster, one or more representative objects are displayed.
Browsing starts at a general level. Afterward, the user follows the path in the cluster
hierarchy for which the displayed representatives resemble the image in the user’s
mind in a best possible way. The browsing terminates when the user reaches a cluster
for which the contained objects match the user’s expectation. Another advantage of
this approach is that the cluster usually contains the complete set of similar objects.
For similarity queries, the number of retrieved results either can be specified in the
case of kNN queries or is implicitly controlled by a specified query range. However,
both methods usually do not retrieve all objects that could be considered as similar.

6.4 Cluster Recognition for OPTICS

In this section, we address the task of automatically extracting clusters from a reach-
ability plot. Enhancing the resulting cluster hierarchy with representative objects for
each extracted cluster allows us to use the result of OPTICS for navigational similarity
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search. After a brief discussion of recent work in that area, we propose a new ap-
proach for hierarchical cluster recognition based on reachability plots called Gradient
Clustering.

6.4.1 Recent Work

To the best of our knowledge, there are only two methods for automatic cluster extrac-
tion from hierarchical representations such as reachability plots or dendrograms—
both are also based on reachability plots. Since clusters are represented as valleys (or
dents) in the reachability plot, the task of automatic cluster extraction is to identify
significant valleys.

The first approach proposed in [11] called ξ -clustering is based on the steepness
of the valleys in the reachability plot. The steepness is defined by means of an input
parameter ξ . The method suffers from the fact that this parameter is difficult to
understand and hard to determine. Rather small variations of the value ξ often lead to
drastic changes of the resulting clustering hierarchy. As a consequence, this method
is unsuitable for the purpose of automatic cluster extraction.

The second approach was proposed by Sander et al. [16]. The authors describe an
algorithm called Tree Clustering that automatically extracts a hierarchical clustering
from a reachability plot and computes a cluster tree. It is based on the idea that
significant local maxima in the reachability plot separate clusters. Two parameters
are introduced to decide whether a local maximum is significant: The first parameter
specifies the minimum cluster size; that is, how many objects must be located between
two significant local maxima. The second parameter specifies the ratio between the
reachability of a significant local maximum m and the average reachabilities of the
regions to the left and to the right of m. The authors in [16] propose to set the minimum
cluster size to 0.5% of the data set size and the second parameter to 0.75. They
empirically show that this default setting approximately represents the requirements
of a typical user.

Although the second method is rather suitable for automatic cluster extraction
from reachability plots, it has one major drawback. Many real-world data sets consist
of narrowing clusters that is, clusters each consisting of exactly one smaller subcluster
(cf. Fig. 6.4).

A
A

A
B

B
B

C
C

C

Fig. 6.4. Sample narrowing clusters: data space (left); reachability plot (middle); cluster hier-
archy (right).
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Since the Tree Clustering algorithm runs through a list of all local maxima (sorted
in descending order of reachability) and decides at each local maximum m, whether m
is significant to split the objects to the left of m and to the right of m into two clusters,
the algorithm cannot detect such narrowing clusters. These clusters cannot be split
by a significant maximum. Figure 6.4 illustrates this fact. The narrowing cluster A
consists of one cluster B, which is itself narrowing consisting of one cluster C (the
clusters are indicated by dashed lines). The Tree Clustering algorithm will find only
cluster A since there are no local maxima to split clusters B and C . The ξ -clustering
will detect only one of the clusters A, B, or C depending on the parameter ξ but also
fails to detect the cluster hierarchy.

A new cluster recognition algorithm should meet the following requirements:

� It should detect all kinds of subclusters, including narrowing subclusters.
� It should create a clustering structure which is close to the one which an experienced

user would manually extract from a given reachability plot.
� It should allow an easy integration into the OPTICS algorithm. We do not want to

apply an additional cluster recognition step after the OPTICS run is completed. In
contrast, the hierarchical clustering structure should be created on-the-fly during
the OPTICS run without causing any noteworthy additional cost.

� It should be integrable into the incremental version of OPTICS [14], as most of the
discussed application ranges benefit from such an incremental version.

6.4.2 Gradient Clustering

In this section, we introduce our new Gradient Clustering algorithm that fulfills all
of the above-mentioned requirements. The idea behind the new cluster extraction
algorithm is based on the concept of inflexion points. During the OPTICS run, we
decide for each point added to the result set, that is, the reachability plot, whether it
is an inflexion point or not. If it is an inflexion point we might be at the start or at the
end of a new subcluster. We store the possible starting points of the subclusters in a
list, called startPts. This stack consists of pairs (o.P, o.R). The Gradient Clustering
algorithm can easily be intergrated into OPTICS and is described in full detail, after
we have formally introduced the new concept of inflexion points.

In the following, we assume that CO is a cluster ordering as defined in Definition
3. We call two objects o1, o2 ∈ CO adjacent in CO if o2.P = o1.P + 1. Let us recall
that o.R is the reachability of o ∈ CO assigned by OPTICS while generating CO. For
any two objects o1, o2 ∈ CO adjacent in the cluster ordering, we can determine the
gradient of the reachability values o1.R and o2.R. The gradient can easily be modelled
as a 2D vector where the y-axis measures the reachability values (o1.R and o2.R) in
the ordering, and the x-axis represent the ordering of the objects. If we assume that
each object in the ordering is separated by width w, the gradient of o1 and o2 is the
vector

	g(o1, o2) =
(

w

o2.R − o1.R

)
.
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Fig. 6.5. Gradient vector 	g(x, y) of two objects x and y adjacent in the cluster ordering.

An example for a gradient vector of two objects x and y adjacent in a cluster ordering
is depicted in Figure 6.5.

Intuitively, an inflexion point should be an object in the cluster ordering where the
gradient of the reachabilities changes significantly. This significant change indicates
a starting or an end point of a cluster.

Let x, y, z ∈ CO be adjacent, that is,

x .P + 1 = y.P = z.P − 1.

We can now measure the difference between the gradient vectors 	g(x, y) and 	g(y, z)
by computing the cosine of the angle between the vectors 	g(x, y) and 	g(z, y) (=
−	g(y, z)). The cosine of this angle is equal to −1 if the angle is 180◦; that is, the
vectors have the same direction. On the other hand, if the gradient vectors differ a
lot, the angle between them will be clearly smaller than 180◦ and thus the cosine will
be significantly greater than −1. This observation motivates the concepts of inflexion
index and inflexion points:

Definition 4 (inflexion index). Let CO be a cluster ordering and x, y, z ∈ CO be
objects adjacent in CO. The inflexion index of y, denoted by I I (y), is defined as the
cosine of the angle between the gradient vector of x, y (	g(x, y)) and the gradient
vector of z, y (	g(z, y)), formally:

I I (y) = cos ϕ(	g(x,y),	g(z,y)) = −w2 + (y.R − x .R)(y.R − z.R)

‖	g(x, y)‖ ‖	g(z, y)‖ ,

where ‖	v‖ :=
√

v2
1 + v2

2 is the length of the vector 	v.

Definition 5 (inflexion point). Let CO be a cluster ordering and x, y, z ∈ CO be
objects adjacent in CO and let t ∈ R. Object y is an inflexion point iff

I I (y) > t.

The concept of inflexion points is suitable to detect objects in CO which are
interesting for extracting clusters.
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Fig. 6.6. Illustration of inflexion points measuring the angle between the gradient vectors of
objects adjacent in the ordering.

Definition 6 (gradient determinant). Let CO be a cluster ordering and x, y, z ∈ CO
be objects adjacent in CO. The gradient determinant of the gradients 	g(x, y) and
	g(y, z) is defined as

gd(	g(x, y), 	g(z, y)) :=
∣∣∣∣ w −w

x .R − y.R z.R − y.R

∣∣∣∣
If x, y, z are clear from the context, we use the short form gd(y) for the gradient

determinant gd(	g(x, y), 	g(y, z)).
The sign of gd(y) indicates whether y ∈ CO is a starting point or an end point of

a cluster. In fact, we can distinguish the following two cases, which are visualized in
Figure 6.6:

� I I (y) > t and gd(y) > 0:
Object y is either a starting point of a cluster (e.g., object a in Fig. 6.6) or the first
object outside of a cluster (e.g., object z in Fig. 6.6).

� I I (y) > t and gd(y) < 0:
Object y is either an end point of a cluster (e.g., object n in Fig. 6.6) or the second
object inside a cluster (e.g., object b in Fig. 6.6).

Let us note that a local maximum m ∈ CO which is the cluster separation point in [16]
is a special form of the first case (i.e., I I (m) > t and gd(m) > 0).

The threshold t is independent from the absolut reachability values of the objects
in CO. The influence of t is also very comprehensible because if we know which
values for the angles between gradients are interesting, we can easily compute t . For
example, if we are interested in angles <120◦ and >240◦ we set t = cos 120◦ = −0.5.
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algorithm gradient_clustering(ClusterOrdering CO, Integer MinPts, Real t)
startPts := emptyStack;
setOfClusters := emptySet;
currCluster := emptySet;
o := CO.getFirst(); // first object is a starting point
startPts.push(o);

WHILE o.hasNext() DO // for all remaining objects
o := o.next;
IF o.hasNext() THEN

IF II(o) > t THEN // inflexion point
IF gd(o) > 0 THEN

IF currCluster.size() >= MinPts THEN
setOfClusters.add(currCluster);

ENDIF
currCluster := emptySet;
IF startPts.top().R <= o.R THEN

startPts.pop();
ENDIF
WHILE startPts.top().R < o.R DO

setOfClusters.add(set of objects from startPts.top() to last end point);
startPts.pop();

ENDDO
setOfClusters.add(set of objects from startPts.top() to last end point);
IF o.next.R < o.R THEN // o is a starting point

startPts.push(o);
ENDIF

ELSE
IF o.next.R > o.R THEN // o is an end point

currCluster := set of objects from startPts.top() to o;
ENDIF

ENDIF
ENDIF

ELSE // add clusters at end of plot
WHILE NOT startPts.isEmpty() DO

currCluster := set of objects from startPts.top() to o;
IF (startPts.top().R > o.R) AND (currCluster.size() >= MinPts) THEN

setOfClusters.add(currCluster);
ENDIF
startPts.pop();

ENDDO
ENDIF

ENDDO

RETURN setOfClusters;
END. // gradient_clustering

Fig. 6.7. Pseudo code of the Gradient Clustering algorithm.

Obviously, the Gradient Clustering algorithm is able to extract narrowing clus-
ters. Experimental comparisons with the methods in [16] and [11] are presented in
Section 6.4.3.

The pseudo code of the Gradient Clustering algorithm is depicted in Figure 6.7,
which works like this. Initially, the first object of the cluster ordering CO is pushed
to the stack of starting points startPts. Whenever a new starting point is found, it
is pushed to the stack. If the current object is an end point, a new cluster is created
containing all objects between the starting point on top of the stack and the current
end point. Starting points are removed from the stack if their reachablity is lower than
the reachability of the current object. Clusters are created as described above for all
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removed starting points as well as for the starting point which remains in the stack.
The input parameter MinPts determines the minimum cluster size, and the parameter
t was discussed above. Finally the parameter w influences the gradient vectors and
proportionally depends on the reachability values of the objects in CO.

After extracting a meaningful hierarchy of clusters from the reachability plot of a
given data set, we still need to enhance the found clustering with suitable representa-
tions. For this purpose, we can display the medoid of each cluster, that is, the object
having the minimal average distance to all the other objects in the cluster.

6.4.3 Evaluation

Automatic cluster recognition is very desirable when analyzing large sets of data. In
the following, we will first evaluate the quality and then the efficiency of the three
cluster recognition algorithms using two real-world test data sets. The first data set
contains approximately 200 CAD objects from a German car manufacturer, and the
second one is a sample of the Protein Databank [17] containing approximately 5000
protein structures. We tested on a workstation featuring a 1.7 GHz CPU and 2 GB
RAM.

6.4.3.1 Effectivity

Both the car and the protein data set exhibit the commonly seen quality of unpro-
nounced but nevertheless to the observer clearly visible clusters. The corresponding
reachability plots of the two data sets are depicted in Figure 6.8.

Fig. 6.8. Sample cluster of car parts. (a) Gradient Clustering, (b) ξ -Clustering, (c) Tree
Clustering.
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Figure 6.8c shows that the Tree Clustering algorithm does not find any clusters
at all in the car data set, with the suggested default ratio parameter of 75% [16].
In order to detect clusters in the car data set, we had to adjust the ratio parameter
to 95%. In this case Tree Clustering detected some clusters but missed some other
important clusters and did not detect any cluster hierarchies at all. If we have rather
high reachability values, for example, values between 5 and 7 as in Figure 6.8 for the
car data set, the ratio parameter for the Tree Clustering algorithm should be set higher
than for smaller values. In the case of the protein data set we detected three clusters
with the default parameter setting, but again missed out on some important clusters.
Generally, in cases where a reachability graph consists of rather high reachability
values or does not present spikes at all, but clusters are formed by smooth troughs
in the waveform, this cluster recognition algorithm is unsuitable. Furthermore, it is
inherently unable to detect narrowing clusters where a cluster has one subcluster of
increased density (cf. Fig. 6.4).

On the other hand, the ξ -clustering approach successfully recognizes some clus-
ters while also missing out on significant subclusters (cf. Fig. 6.8b). This algorithm has
some trouble recognizing cluster structures with a significant differential of “steep-
ness.” For instance, in Figure 6.4 it does not detect the narrowing cluster B inside
of cluster A because it tries to create steep down-areas containing as many points
as possible. Thus, it will merge the two steep edges if their steepness exceeds the
threshold ξ . On the other hand, it is able to detect cluster C within cluster A.

Finally, we look at our new Gradient Clustering algorithm. Figure 6.8a shows that
the recognized cluster structure is close to the intuitive one, which an experienced
user would manually derive. Clusters which are clearly distinguishable and contain
more than MinPts elements are detected by this algorithm. Not only does it detect a
lot of clusters, but it also detects a lot of meaningful cluster hierarchies, consisting of
narrowing subclusters.

To sum up, in all our tests the Gradient Clustering algorithm detected much
more clusters than the other two approaches, without producing any redundant and
unnecessary cluster information.

6.4.3.2 Efficiency

In all tests, we first created the reachability plots and then applied the algorithms
for cluster recognition and representation. Let us note that we could also have inte-
grated the Gradient Clustering into the OPTICS run without causing any noteworthy
overhead.

The overall runtimes for the three different cluster recognition algorithms are
depicted in Table 6.1 Our new Gradient Clustering algorithm does not only produce

Table 6.1. CPU time for cluster recognition.

Car data (200 parts) Protein data (5000 molecules)
ξ -clustering 0.221 s 5.057 s
Tree Clustering 0.060 s 1.932 s
Gradient Clustering 0.310 s 3.565 s
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the most meaningful results, but also in sufficiently short time. This is due to its
runtime complexity of O(n).

It theoretically and empirically turned out that the Gradient Clustering algorithm
seems to be more practical than recent work for automatic cluster extraction from
hierarchical cluster representations.

6.5 Extracting Cluster Hierarchies for Similarity Search

6.5.1 Motivation

So far, our prototype works fine by computing, extracting, and visualizing the hierar-
chical density-based cluster structure of a data set. The density-based cluster model
has been chosen because of several criteria. One very important aspect among these
criteria is its effectivity in finding clusters of different size and shape. However, this
clustering notion needs not to be the best cluster model for navigational similarity
search. For this application, the use of OPTICS may have two limitations. In this
section, we will discuss these limitations and a possible solution for them.

The first limitation of using the density-based clustering notion is that OPTICS
may place two objects that are rather similar, that is, near in the feature space, into two
separate clusters. As a consequence, these two objects may be displayed in completely
different subtrees of the cluster hierarchy; that is, the relationship between these two
points in the cluster hierarchy is rather weak. This problem is visualized in Figure 6.9:
object A is obviously much more similar to object B than to object C . However, since
A and C belong to the same cluster, both objects will be considered as similar by
OPTICS. A and C will be placed in a similar subtree of the cluster hierarchy, whereas
B may end up in a completely different subtree. This is against the intuitive notion
of similarity that would expect A and B having a closer relationship in the cluster
hierarchy than A and C .

The second limitation is that a cluster of complex shape and huge size can usually
not be represented by one representative object. However, the idea of navigational
similarity search depends on the suitability of the object that is displayed to represent
the objects in a cluster.

OPTICS

CLUSS

C

A

B

Fig. 6.9. A new cluster model for navigational similarity search.
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In order to solve these limitations, we propose a novel way of computing the
cluster hierarchy and suitable representations. The general idea is that we are inter-
ested in small spherically shaped clusters rather than in clusters of arbitrary size and
shape. Intuitively, we can select a given number of representative objects that repre-
sent their spherical neighborhood in a best possible way. These representatives can
build the lowest level of a cluster hierarchy tree. The next level of the tree (above
a given level) can then be built by choosing again the most representative objects
from the representatives in the level below until we do not have enough representa-
tives and, thus, have reached the root of the hierarchy. The most important aspect in
this strategy is the definition of the representative power of an object. We will dis-
cuss this issue and outline a novel procedure to generate the cluster hierarchy in the
following.

The idea of this new approach is sketched in Figure 6.9: a data set with two
clusters of different size and shape is clustered. Using OPTICS, both clusters are
well separated and we can observe both of the mentioned problems: objects that are
member of the larger cluster but are quite near (i.e., similar) to the objects in the
smaller cluster will have a significantly poor relationship in the cluster hierarchy to
the objects in the smaller cluster. On the other hand, objects that are much less similar
but are members of the same (larger) cluster will have a strong relationship to each
other in the hierarchy. In addition, it is not clear how to represent the larger cluster
with its complex shape by a meaningful representative. Our new approach generates
representatives for small convex clusters step by step. As it can be seen from Figure
6.9, this results in a hierarchy that is much more suitable for interactive similarity
search. For example, the objects of the smaller cluster will be represented by the same
object in the root node of the hierarchy as the objects that belong to the large cluster
but are located at the border of that cluster near the smaller cluster. This reflects the
intuitive notion of similarity more accurately.

6.5.2 Basic Definitions

The basic idea is to extract a sufficient amount of dedicated objects that represents
the other objects in a best possible way. Such objects are called representatives and
should be associated with a set of non representatives, called the border shadow of a
representative.

Definition 7 (border shadow). Let REP be a set of representative objects and ε ∈ R.
The border shadow of a representative r ∈ REP is defined by

r.bordershadow := {o ∈ REP | dist(o, r ) ≤ ε}.

The border shadow of r contains the set of objects in the (hyper-) sphere around r
with radius ε. Obviously, a global value for the size of the representative area for each
representative is not appropriate, since it does not reflect the local data distribution.
Thus, we define an additional, adaptive set of representative objects, the so-called
core shadow of a representative.
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Definition 8 (core distance). Let REP be a set of representative objects, k ∈ N and
r ∈ REP . The core distance of r is defined by:

r.coredist :=
{

0 if |Nε(r )| < k
k-nn-dist(r ) else.

Definition 9 (core shadow). Let REP be a set of representative objects and r ∈
REP . The core shadow of r is defined by:

r.coreshadow := {o ∈ REP | dist(o, r ) ≤ r.coredist}.
The core shadow of r contains the set of objects in the (hyper-) sphere around r

with radius k-nn-dist(r ). Obviously, this radius adapts to the local density of objects
around r .

Both the border shadow and the core shadow can be used to define the quality of
a representative.

Definition 10 (quality of a representative). Let REP be a set of representative
objects and r ∈ REP . The quality of r is defined by

r.quali t y :=
{

0 if |Nε(r )| < k
Nε(r )

1+k-nn-dist(r )
else.

The key idea of our hierarchical clustering approach is to find on each level of the
hierarchy an optimal (w.r.t. quality) set of representatives such that the representatives
have nonoverlapping core shadows (overlapping border shadows are allowed).

6.5.3 Algorithm

The general idea of the algorithm is to start with the whole database as the initial
set of representatives. In the i-th iteration, we take the set of current representatives
REP i and compute the new set of representatives REP i+1. To ensure that we get the
best representatives, we sort REP i by descending quality values (cf. Definition 10).
Theoretically, we can recursively select the representative r having the highest quality
from the sorted REP i list, add r with its border shadow to REP i+1, and remove all
further objects from REP i that are in the core shadow of r .

However, we have to take care that core shadows of representatives in REP i+1

do not overlap. For that purpose, we test for each not yet selected representative
r ∈ REP i whether its core shadow overlaps the core shadow of any object in REP i+1.
To support this intersection query efficiently, we can organize the objects in REP i+1

in a spatial index structure (data structure send). If there is no such overlap, we add
r and its border shadow to REP i+1 (and send) and remove all objects in the core
shadow of r from REP i . If the core shadow of r intersects the core shadow of any
already selected representatives in REP i+1, we have to distinguish two cases. (1)
If r is within the border shadow of any representative in REP i+1 we can remove
r because it is represented by at least one representative. (2) If r is not within the
border shadow of any representative in REP i+1 we cannot remove r since it is not
yet represented. We will have to test for r at a later time, whether it is in the border
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algorithm cluster_representatives(SetOfObjects DB, Integer k)
REP_0 := emptySet;
REP_1 := DB;
i := 1;

WHILE REP_i != REP_i-1 DO
compute new epsilon;
send = emptySpatialIndex;
wait = emptySpatialIndex;
sort REP_i in descending order w.r.t. quality values;
r := REP_i.removeFirst();

WHILE r.quality == 0 AND REP_i.size > 0 DO
IF r.coreshadow does not intersect the core shadow of any object in send THEN

send.add(r);
FOR EACH s IN wait DO

IF s is in r.bordershadow DO
wait.remove(s);

ENDIF
ENDDO

ELSE
IF r is not in border shadow of any object in send DO

wait.add(r);
ENDIF

ENDIF
r := REP_i.removeFirst();

ENDDO

REP_i+1 := REP_i;
REP_i+1.addAll(send);
REP_i+1.addAll(wait);
i++;

ENDDO
END. // cluster_representatives

Fig. 6.10. Pseudo code of the cluster representatives algorithm.

shadow of a representative chosen later. For that purpose, we add those points to an
additional data structure called wait . Thus, when adding a new representative r to
REP i+1, we have to test whether there are objects in wait which are in the border
shadow of r . If so, we delete those objects from wait . The algorithm terminates if
we gain no more new representatives after an iteration, that is, REP i+1 = REP i .

In summary, in each iteration, we do the following (cf. the pseudo code in Figure
6.10):

1. Sort REP i by descending quality values.
2. As long as there are representatives in REP i having a quality greater than 0, take

and remove the first object r from the sorted REP i list:
If r.coreshadow does not intersect the core shadow of any object in REP i+1 (cf.
object c in Fig. 6.11):
� add r along with r.coreshadow and r.bordershadow to REP i+1,
� add r to send ,
� remove all objects in wait which are in the border shadow of r (range-query

against wait).
Else (i.e., r.coreshadow intersects the core shadow of at least one object in
REP i+1):
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Fig. 6.11. Sorting of representatives acording to intersections of their core shadows and border
shadows.

� If r is not in the border shadow of any object in REP i+1, add r to wait (cf.
object a in Fig. 6.11).

� If r is in the border shadow of any object in REP i+1, do nothing (r is already
removed from REP i ; cf. object b in Fig. 6.11).

3. Add all remaining objects in REP i and wait to REP i+1.

6.5.4 Choice of ε in the i-th Iteration

The quality of a representative r depends not only on the parameter k (specifying the
number of neighbors of r which are taken into account for quality computation) but
also on the radius ε of the local area around r . A global value for ε is not appropriate
since the dataspace is getting sparser in each iteration. A dynamically adapting value
for ε is deemed more appropriate.

If we assume that DB is a set of n feature vectors of dimensionality d (i.e.,
DB ⊆ R

d ) and each attribute value of all o ∈ DB is normalized (i.e., falls into the
range [0,MAX ] for a specified, fixed MAX ) the volume of the data space can be
computed by

Vol(DB ) = MAX d .

If the n objects of DB are uniformly distributed in Vol(DB ), we expect one object
in the volume Vol(DB )/n and k objects in the volume k · Vol(DB )/n. Thus, the
expected k-nearest neighbor distance of any object o ∈ DB is equal to the radius r of
a hypersphere having this volume k · Vol(DB )/n. Since the volume of a hypersphere
with radius r can be computed by

VSphere(r ) =
√

πd

�(d/2 + 1)
· rd ,
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where � denotes the well-known Gamma function, we can compute the expected
k-nn-distance r̂ of the objects in DB by solving the following equation:

√
πd

�(d/2 + 1)
· r̂ d = k · MAX d

n
.

Simple algebraic transformations yield:

r̂ = MAX · d

√
k · �(d/2 + 1)

n ·
√

πd
.

For simplicity reasons, we can also compute:

r̂ = MAX · d

√
k

n
.

Let us note that this is the correct value of the expected k-nn-distance if we use the
L∞-norm instead of the L2-norm.

In the i-th iteration, an appropriated choice for ε as the expected k-nn-distance of
the objects in REP i :

ε = MAX · d

√
k

|REP i | .

If we further assume MAX = 1 (i.e., all attributes have normalized values in [0, 1]),
we have

ε = d

√
k

|REP i | .

6.5.5 The Extended Prototype CLUSS

We have implemented the proposed ideas in Java and integrated a GUI to visualize
the cluster hierarchy and cluster representatives. The resulting prototype is called
CLUSS, which uses the newly proposed method for generating the cluster hierarchy
and suitable cluster representatives. A sample sceenshot of CLUSS is depicted in
Fig. 6.12. The hierarchy is now visualized by means of a tree (upper right frame in
Fig. 6.12). For clearness, the subtrees of each node of the tree is not visualized per
default but can be expanded for browsing by clicking on the according node. The
hierarchy tree is also visualized in the frame on the left-hand side of the GUI. The
frame on the lower right side in Figure 6.12 displays the representatives at the nodes
that are currently selected.

We performed some sample visual similarity search queries, using CLUSS, and
compared it to the cluster hierarchy created by OPTICS and Gradient Clustering.
In fact, it turned out that using CLUSS allows a more accurate interactive simi-
larity search. The hierarchy generated by CLUSS differs from that generated by
its comparison partner and is more meaningful. So CLUSS provided better results
for navigational similarity search, for applications of visual data mining, employing
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Fig. 6.12. Screenshot of CLUSS.

OPTICS is more appropriate, especially, if the application calls for clustering solu-
tions that detect clusters of different sizes and shapes.

6.6 Conclusions

In this chapter, we combined hierarchical clustering and data visualization techniques
to allow data analysis, comparison of data models and navigational similarity search.
The idea of comparing data spaces using hierarchical density-based clustering is to
display connected reachability plots and compare these to reference class models us-
ing color coding. Navigational similarity search describes a novel approach to retrieve
similar data objects. Instead of posing similarity queries, our new approach extracts
a cluster hierarchy from a given set of data objects and uses the resulting cluster
tree to navigate between sets of similar objects. To extract a cluster hierarchy from
a reachability plot generated by the density-based hierarchical clustering algorithm
OPTICS, we introduced a new method for cluster extraction called Gradient Clus-
tering. OPTICS produces a meaningful picture of the density distribution of a given
data set and is thus well suited for data analysis. However, in many applications the
cluster hierarchy derived from the reachability plot might not provide intuitive access
for navigational similarity search. Therefore, we described an alternative hierarchical
clustering approach called CLUSS that facilitates the interactive similarity search in
large collections of data.
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7. Feature Selection for Classification of
Variable Length Multiattribute Motions∗

Chuanjun Li, Latifur Khan, and Balakrishnan Prabhakaran

Summary. As a relatively new type of multimedia, captured motion has its specific properties.

The data of motions has multiple attributes to capture movements of multiple joints of a subject,

and has different lengths for even similar motions. There are no row-to-row correspondences

between data matrices of two motions. To be classified and recognized, multiattribute motion

data of different lengths are reduced to feature vectors by using the properties of Singular Value

Decomposition (SVD) of motion data in this chapter. Different feature selection approaches

are explored, and by applying Support Vector Machines (SVM) to the feature vectors, we can

efficiently classify and recognize real-world multiattribute motion data. With our data sets

of hundreds of 3D motions with different lengths and variations, classification by SVM is

compared with classification by related similarity measures, in terms of accuracy and CPU

time.

7.1 Introduction

Captured motion stream is a relatively new type of multimedia and can have a variety
of applications: gait analysis (physical medicine and rehabilitation), virtual reality,
as well as in entertainment fields such as animations and video gaming industry. The
motions recorded by gesture sensing devices (such as the data glove CyberGlove)
and 3D human motion capture cameras (such as the Vicon cameras) have multiple
attributes and multiple dimensions. For instance, a gesture sensing device such as
CyberGlove has multiple sensors that transmit values to indicate motions of a hand,
and a motion capture system generates multiple degrees of freedom (DOF) data for
human motions. As a result, a multiattribute motion yields a matrix over the motion
duration, rather than a multidimensional vector as for a time series sequence.

Motion classification identifies a motion class to which an unknown motion most
likely belongs, and poses several challenges:

� Each of the motion data set has dozens of attributes rather than one attribute as for
a time series sequence. Motion data of multiple attributes are aggregate data, and
should be considered together to make the motions meaningful.

∗ This chapter is extended from our previous work [1].
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Fig. 7.1. Data for two similar motions. Similar motions can have different lengths, and different

corresponding attribute pairs can have different variations at different time, hence there are no

row-to-row correspondences between data of similar motions.

� The matrices of motion data can be of variable lengths, even for similar motions.
Motions are carried out with different speeds at different time. They can have
different durations, and motion sampling rates may also be different. There are no
continuous row-to-row correspondences between data of similar motions as shown
in Figure 7.1.

High accuracy classification makes the effective applications of new motions pos-
sible, and requires the extraction of highly representative feature vectors of motions.
Instead of considering motion data rows/frames for motion identification, we con-
sider the geometric structures of motion matrices in a high-dimensional space. If a
motion frame has dimension n, then a motion sequence of length m can be taken to
be m vectors in an nD space. The distributions of the nD vectors are explored for
feature extraction in this chapter. We obtain feature vectors for motion patterns, using
the Singular Vector Decomposition (SVD) properties of the motion matrices, since
SVD optimally exposes the geometric structure of a matrix. Different approaches
to extracting feature vectors are explored on the basis of how information is to be
extracted from SVD. We then classify the vectors for all the motions. The learning
machines can be trained for classification by using a training set of vectors each of
which has a unique class label. After training, the machines can determine the class
label of a new motion and thus classify the new motion during a testing phase.

There are many classification techniques for different applications. Classification
by Support Vector Machines (SVM) has been proven to be computationally efficient
especially when dealing with relatively large data sets [2] and has been successfully
applied to solve many real-world problems [3–5]. This chapter explores the feasibility
of SVM in motion classification and experiments with different criteria for class
decision. Experiments with hand gestures and human motions achieve 95–100%
classification accuracy.

In comparison with classification by using SVM, we also computed the similarities
of motion data in the testing data sets with motion data in the training data sets.
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The similarity measures used are the weighted-sum SVD [6], Eros [7], MAS [8],
and kWAS [9], similarity measures proposed recently for capturing similarities of
variable-length multiattribute motion patterns.

This chapter extends our previous work in [1] in the following ways:

� Different feature vectors are explored. The new feature vectors try to consider more
information from SVD.

� SVM with probability estimate is explored. This option provides the possibility of
segmenting streams by SVM for further work.

� Various human motions captured by infrared cameras are experimented in addition
to hand gestures.

� Comparison with new similarity measures is made.

The rest of the chapter is organized as follows. Section 7.2 gives a brief review
of related work. Section 7.3 contains the background knowledge of SVM, SVD, and
dynamic time warping (DTW). Section 7.5 proposes a new approach to classifying
multiattribute motion data, using SVD and SVM, and the classification is further
verified by using DTW for motion directions. Section 7.6 experimentally evaluates
the accuracy and CPU time of our proposed approach, followed by Section 7.7, which
concludes this chapter.

7.2 Related Work

Recognition of multiattribute sequences has obtained increasing attentions in recent
years. Mostly distance measures are defined for multiattribute data to reflect the
similarities of multiattribute data. In [10], multiattribute sequences of equal lengths
are considered. Scaling and shifting transformations are considered when defining
sequence distances and an index structure is proposed for shift and scale transforma-
tions. Similarity search of multiattribute sequences with different lengths cannot be
solved by the distance definitions and the index as proposed in [10].

Multiattribute sequences are partitioned into subsequences in [11]. Each of the
partitioned subsequences is contained in a Minimum Bounding Rectangle (MBR).
Every MBR is indexed and stored into a database by using an R-tree or any of its
variants. Estimated MBR distances are used to speed up the searching of similar
motions. If two sequences are of different lengths, the shorter sequence is compared
with the other by sliding from the beginning to the end of the longer sequence.
When two similar sequences with different durations or with local accelerations and
decelerations are considered, other approaches would be needed.

Dynamic time warping (DTW) and longest common subsequence (LCSS) are
extended for similarity measures of multiattribute data in [12]. Before the exact LCSS
or DTW is performed, sequences are segmented into MBRs to be stored in an R-tree.
On the basis of the MBR intersections, similarity estimates are computed to prune
irrelevant sequences. Both DTW and LCSS have a computational complexity of
O(wd(m + n)), where w is a matching window size, d is the number of attributes,
and m, n are the lengths of two data sequences. When w is a significant portion of m



P1: OTE/SPH P2: OTE

SVNY295-Petrushin September 18, 2006 21:50

7. Feature Selection for Motion Classification 119

or n, the computation can be even quadratic in the length of the sequences, making it
nonscalable to large databases with long multiattribute sequences. It has been shown
in [12] that the index performance significantly degrades when the warping length
increases. Even for a small number of 20 MBRs per long sequence, the index space
requirements can be about a quarter of the data set size.

Hidden Markov models (HMMs) have been used to address speech and hand-
writing recognition [13, 14] as well as American Sign Language (ASL) recognition
problems [15]. Different states should be specified for each sign or motion unit when
HMMs are involved, the number of words in a sentence is required to be known before-
hand, and grammar constraints should also be known beforehand for using HMMs.
When the specified states are not followed, or motion variations are relatively large,
recognition accuracy would decrease dramatically. This is true even when legitimate
or meaningful motions are generated for HMM-based recognitions. This chapter ad-
dresses the classification of individual motions, no states or grammar constraints are
involved for individual motions. Thus HMMs are not suitable for our classification
purpose.

Shahabi et al. [16] applied learning techniques such as Decision Trees, Bayesian
classifiers and Neural Networks to recognize static signs for a 10-sign vocabulary,
and achieved 84.66% accuracy. In [6], a weighted-sum SVD is defined for measuring
the similarity of two multiattribute motion sequences. The similarity definition takes
the minimum of two weighted sums of the inner products of right singular vectors.
Eros as proposed in [7] computes the similarity of two motion patterns by using
angular similarities of right singular vectors. The angular similarities are weighted
by a different weight obtained from singular values of all available motion patterns in
the database. The singular value weight vector is the same for similarity computation
of all motion patterns.

Li et al. define a similarity measure for multiattribute motion data in [8] as follows.

�(Q, P) = |u1 · v1| × (�σ · �λ − η)/(1 − η)

where u1 and v1 are the first singular vectors of Q and P , respectively, �σ = σ/|σ |,
�λ = λ/|λ|, and σ and λ are the vectors of the singular values of QT Q and PT P ,
respectively. Weight parameter η is to ensure that the normalized singular value
vectors �σ and �λ and the first right singular vectors u1 and v1 have similar contributions
to the similarity measure and is determined by experiments. η can be set to 0.9 for
the multiattribute motion data. This similarity measure captures the most important
information revealed by the first right singular vectors and the singular values, and can
be applied to prune most of the irrelevant motion data, and inner products of equal-
length reinterpolated first left singular vectors have been used as the first attempt to
consider motions with different directions or with repetitions.

We refer to the similarity measure as defined in [8], which captures the main
angular similarity of two motions as MAS hereafter. Furthermore, kWAS as proposed
in [9] considers the angular similarities of the first k right singular pairs weighted by
the associated singular values.

In contrast, this chapter addresses motion classification by utilizing SVD, SVM,
and DTW. Different feature extraction approaches are explored, and different class
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Fig. 7.2. Optimal hyperplane illustration.

decision criteria are experimented with motion data generated for both hand gestures
and human motions.

7.3 Background

This section gives some background knowledge of singular value decomposition and
support vector machines for feature extraction and motion classification.

7.3.1 Support Vector Machines

Support vector machines are a class of learning machines that aim at finding optimal
hyperplanes, the boundaries with the maximal margin of separation between every two
classes, among different classes of input data or training data in a high-dimensional
feature space F , and new test data can be classified using the separating hyperplanes.
The optimal hyperplanes, obtained during a training phase, make the smallest number
of training errors. Figure 7.2 illustrates an optimal hyperplane for two classes of
training data.

Let {xi , yi }, i = 1, 2, . . . , L be L training data vectors xi with class labels yi , and
yi ∈ {−1, +1} for binary classification. Given an input vector x , an SVM constructs
a classifier of the form

g(x) = sign(
L∑

i=1

αi yi K (xi , x) + b)

where {αi } are nonnegative Lagrange multipliers each of which corresponds to an
example from the training data, b is a bias constant, and K (·, ·) is a kernel satisfying
the conditions of Mercer’s theorem [4]. Frequently used kernel functions are the
polynomial kernel K (xi , x j ) = (xi · x j + 1)d and Gaussian Radial Basis Function

(RBF) K (xi , x j ) = e−|xi −x j |2/2σ 2

.
The above decision function does not produce a probability. In many applica-

tions, a posterior probability, rather than an uncalibrated decision value, is needed for
capturing the classification uncertainty. Efforts of mapping SVM outputs to posterior
probabilities have been made in [4,17]. Platt [17] uses a sigmoid function to estimate
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the binary class probability which is monotonic in g:

p(y = +1|g) = 1

1 + exp (Ag + B)

The parameters A and B can be fitted by using maximum likelihood estimation.
For multiclass classification, class probabilities can be estimated from binary class

probabilities by pairwise coupling. Wu et al. [18] propose a multiclass probability
approach which is more stable than other popular existing methods by using the
following optimization:
Optimization:

min
p

k∑
i=1

∑
j : j �=i

(rij p j − rji pi )
2

under the constraints:

k∑
i=1

pi = 1, pi ≥ 0, ∀i

where ri j are the binary class probability estimates of μi j ≡ P(y = i |y = i or j, x)
as obtained in [17].

The above optimization problem can be solved using Gaussian elimination after
some algebra as shown in [18]. The vectors for which αi > 0 after optimization
are called support vectors. Support vectors lie closest to the optimal hyperplane.
After training, only the support vectors of the training data are used to represent the
classifiers, and other training vectors have no influences.

For multiclass classification, two commonly used methods are one-versus-rest and
one-versus-one approaches. The one-versus-rest method constructs k classifiers for k
classes, each of which separates that class from the rest of the data, and a test data point
will be classified in the class with the highest probability estimate. The one-versus-
one method constructs a classifier for each pair of classes. The probability of a test
data vector belonging to one class is estimated from binary class probabilities, and the
class with the largest posterior is the winning class for the test vector: arg maxi [pi ].
The one-versus-one method will be used for this work because of its simplicity and
high classification accuracy [19].

SVM basically applies to classification of vectors, or uniattribute time series data.
To classify multiattribute data, which are matrices rather than vectors, we need to
transform or reduce multiattribute matrices into vectors. We propose to use SVD to
reduce multiattribute motion data to feature vectors. Before showing how to extracting
feature vectors, we present a brief introduction of SVD in the following subsection.

7.3.2 Singular Value Decomposition

As proven in [20], for any real m × n matrix A, there exist orthogonal matrices

U = [u1, u2, . . . , um] ∈ Rm×m, V = [v1, v2, . . . , vn] ∈ Rn×n
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=

A =

T

Fig. 7.3. SVD of a 6 × 5 example matrix A.

such that

A = U�V T

where � = diag(σ1, σ2, . . . , σmin(m,n)) ∈ Rm×n , σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0. The
σi is the i th singular value of A in the nonincreasing order and the vectors ui and vi

are the i th left and right singular vectors of A for i = min(m, n), respectively. The
singular values of a matrix A are unique, and the singular vectors corresponding to
distinct singular values are uniquely determined up to the sign [21]. Figure 7.3 shows
an SVD example for a 6 × 4 matrix A.

The i th largest singular value σi of A is actually the 2-norm or Euclidean length
of the i th largest projected vector Ax , which is orthogonal to all the i − 1 larger
orthogonal vectors as shown by

σi = max
U

min
x∈U,‖x‖2=1

‖ Ax ‖2

where the maximum is taken over all i-dimensional subspaces U ⊆ �n [20]. Note
that σ1 is the largest 2-norm of A projections onto any x directions:

σ1 = max
‖x‖2=1

‖ Ax ‖2

Hence the right singular vectors are the corresponding projection directions of the
associated singular values, and the singular values account for the Euclidean lengths
of different vectors projected by the row vectors in A onto different right singular
vectors.

When A is subtracted by the its respective column means as for the covariance
matrix used for principal component analysis (PCA), the first right singular vector v1

gives the direction along which the multi-dimensional row vectors or points contained
in A have the largest variance, and the second right singular vector v2 is the direction
with the second largest variance, and so on. The singular value σi reflects the variance
along the corresponding i th singular vector. Figure 7.4 shows the data in an 18 × 2
matrix and its first singular vector v1 and second singular vector v2. Along the first
singular vector v1, data points have the largest variance as shown in Figure 7.4. If
A has nonzero means, column means contribute to both singular values and right
singular vectors.
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y
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v1

v2

Fig. 7.4. Geometric structure of a matrix exposed by its SVD.

The right singular vectors of a matrix A can be proven to be actually the corre-
sponding singular vectors of M = AT A, and the singular values of A are the square
roots of the corresponding singular values of M . Hence the computations of right
singular vectors and singular values can be done by computing the singular vectors
and singular values of the symmetric matrix M = AT A. For symbolic convenience,
we will use u1 and σ to represent the respective first singular vector and singular
value vector of M = AT A, and use v1 and λ to represent those of another motion B
with corresponding M ′ = BT B.

7.4 Feature Vector Extraction Based on SVD

7.4.1 SVD Properties of Motion Data

When two motions are similar, the row vectors in the motion matrices should cover
similar trajectories in the n-dimensional space; hence, the geometric structures of the
motion data matrices are similar. Identically, for two similar motions, all correspond-
ing singular vectors should be close to each other, and the corresponding singular
values should also be proportional to each other. For realistic motions with variations,
singular vectors associated with different singular values have different sensitivities
to the motion variations. If a singular value is large and well separated from its neigh-
bors, the associated singular vector would be relatively insensitive to small motion
variations. On the other hand, if a singular value is among a poorly separated cluster,
its associated singular vector would be highly sensitive to motion variations.

Figure 7.5 shows the accumulative singular values for hand gestures captured
by a data glove CyberGlove and human body motions captured by multiple digital
cameras as described in Section 7.6. It shows that the first two singular values account
for more than 95% of the sum of singular values, while the others might be very small.
If the column means are small, the variance along the first singular vector would be the
largest and the first singular value accounts for most of the variances. The first singular
vectors of similar motions would be close to each other as shown in Figure 7.6 whereas
others might not be close to each other as shown in Figure 7.7. If the column means
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Fig. 7.7. The second singular vectors u2 and v2 for two similar motions. The large differences

in the second singular vectors show that the second singular vectors might not be close to each

other because of the variations in the similar motions.

are large, the first singular value would mainly account for column means and the
associated variance might not be the largest. In this case, the first singular vector would
be close to the column mean vector if the direction of the largest variance is different
from the direction of the large column mean vector, and the second singular vector
would be close to the direction with the largest variance as illustrated in Figure 7.8.

7.4.2 Feature Vector Extraction

We can extract the feature vectors from the singular vectors and singular values
according to how they can capture the similarity of motions. The first singular vectors
are the most dominating factors contributing to the similarity of two motions due
to their associated large singular values. Other singular vectors are less reliable in
capturing the similarities due to their associated singular values that might be small
and approach zero. Hence we can use singular values as weights to reflect the reliability
of the associated singular vectors. On the other hand, since the singular values are
the Euclidean lengths or 2-norms of projections of the motion matrices A on their
associated singular vectors, they reflect the shapes of the hyper-ellipsoids Ax with x
being a unit 2-norm vector. The hyper-ellipsoid shapes should be similar for similar
motions; hence, the normalized singular values should be proportional. In other words,
if the normalized singular value vectors �σ = σ/|σ | is for one motion and �λ = λ/|λ|
is for another, then �σ should be close to �λ if the two motions are similar to each
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Fig. 7.8. Variances in the directions of different singular vectors. Because of large column

means, variance in the direction of the first singular vector might not be the largest.

other. Two different feature vectors can thus be extracted as follows by using only
dominating information from singular vectors and singular values.

1. The first singular vector u1 concatenated by the normalized singular value vector
�σ or

2. The weighted first singular vector w1u1 followed by the weighted second singular
vector w2u2, with wi = σi/

∑n
i=1 σi .

Since the right singular vector u1 can have opposite signs, the following steps can
be taken to obtain consistent signs for u1 of similar patterns.

1. Generate a matrix S with rows being the first right singular vectors u1 of all known
patterns.

2. Subtract the elements of S by their corresponding column means, and update S to
be the resulting matrix with zero column means.

3. Compute the SVD of S and let its first right singular vector be s1.
4. Project the first right singular vector u1 of patterns (or pattern candidates) onto s1

by computing u1 · s1.
5. Negate all components of any u1 if the corresponding the inner product u1 · s1 < 0,

and let u1 be the negated vector.

As |u1| = 1 and |s1| = 1, the inner product u1 · s1 = |u1||s1| cos(α) ranges over
[−1, 1], where α is the angle between the two vectors. Since the projections of u1 onto
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s1 have the largest variances among projections on any unit vectors, we can expect
that u1 · s1 will not cluster around zero. Our experiments with hundreds of patterns
of different sources show that no pattern has |u1 · s1| < 0.3. Because similar patterns
should have close projections |u1 · s1|, reasonable variations in similar patterns would
not result in u1 · s1 projections of opposite signs if their u1 signs are the same. That is,
only if the u1 signs of similar motions are opposite can their u1 · s1 projections have
different signs. Hence, u1 of similar motions would have the same sign by requesting
u1 · s1 > 0.

Similarly, the above steps can be repeated for u2 with all u1 replaced by u2,
resulting in consistent signs for the second singular vectors of similar motions. We
refer to any of the above extracted feature vectors as f if not stated otherwise.

7.5 Classification of Feature Vectors Using SVM

After a feature vector is extracted from SVD of a motion matrix, it can be classified by
SVM classifiers. Before classification, the SVM classifiers need to be trained in order
to have support vectors and optimal hyperplanes. All the feature vectors of training
motion data sets are used as inputs to SVM classifiers for training. This training phase
can be done offline (see the top portion of Figure 7.9). Similarly, we generate testing
data sets and these testing data can be classified by the SVMs that have already been
trained offline with training data sets.

Classification by SVM classifiers with decision values and by SVM classifiers
with probability estimates in the SVM software package [19] are done for accuracy
comparison, and the RBF kernel function is used for training. The type of kernel
utilized by the SVM is inconsequential as long as the capacity is appropriate for the
amount of training data and complexity of the classification boundary [4]. Both the
training vectors and the testing vectors have the following format:

c 1 : f1 2 : fk2 . . . 2n : f2n

Training

SVM

Real Time

Feature vector

generation

Feature vector

generation

Data generation

SVDData generation

Offline

Training data set

Testing data set

Test
Predicted

lables

SVD

Fig. 7.9. Multiattribute motion data classification flowchart.
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where c is an integer label identifying the class of the training vector f , and fi is the
i th component of f .

Feature vectors for similar motions are given the same class label c, and one-
versus-one multiclass SVM is employed for classification. The class label c in the
testing data is used just for the purpose of obtaining classification accuracy.

For motions following similar trajectories but in different directions, it can be
proved that the extracted feature vectors would be similar [1]. Further recognition
of motions in different directions can be done by applying dynamic time warping
distance to motion data projections on the associated first right singular vectors as
shown in [1].

7.6 Performance Evaluation

This section evaluates the extracted feature vectors by classifying them with SVM
classifiers with both decision values and probability estimates. Hand gestures and
various dances were generated for classification. Classification accuracy and CPU
time are compared with those obtained by similarity computation using the weighted-
sum SVD similarity measure [6], Eros [7], the MAS [8], and kWAS [9].

7.6.1 Hand Gesture Data Generation

We generated motion data for different hand motions, using a data glove called
CyberGlove. Motions of a hand are captured by 22 sensors located at different
positions of the glove, and one sensor generates one angular value at about 120
times/second. One hundred ten different motions were carried out, and three similar
motions were generated for each of them. Each motion has a different duration from
all the others, and all the resultant motion data matrices have different lengths ranging
from about 200 to about 1500 rows. The data matrix of one motion can have more than
two times the length of the data matrix of a similar motion. Each data matrix of different
motions is given a unique class label, and similar motions have the same class label.

7.6.2 Motion Capture Data Generation

The motion capture data come from various human motions captured collectively by
using 16 Vicon cameras and the Vicon iQ Workstation software. A dancer wears a
suit of nonreflective material, and 44 markers are attached to the body suit. After
system calibration and subject calibration, global coordinates and rotation angles of
19 joints/segments can be obtained at about 120 frames per second for any motion.
Patterns with global 3D positional data can be disguised by different locations, orien-
tations, or different paths of motion execution as illustrated in Figure 7.10(a). Since
two patterns are similar to each other because of similar relative positions of corre-
sponding body segments at corresponding time, and the relative positions of different
segments are independent of locations or orientations of the body, we can transform
the global position data into local position data.
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Fig. 7.10. 3D motion capture data for similar motions executed at different locations and in

different orientations: (a) before transformation and (b) after transformation.

The transformed local data are positions of different segments relative to a moving
coordinate system with the origin at some fixed point of the body, for example, the
pelvis. The moving coordinate system is not necessarily aligned with the global sys-
tem, and it can rotate with the body. So data transformation includes both translation
and rotation, and the transformed data would be translation and rotation invariant as
shown in Figure 7.10(b). The coordinates of the origin pelvis are not included; thus,
the transformed matrices have 54 columns.

Sixty different motions including Taiqi, Indian dances, and western dances were
performed for generating motion capture data, and each motion was repeated five
times, yielding 60 classes of 300 total human motions. Every repeated motion has a
different location and different durations, and can face different orientations.

7.6.3 Performance Evaluation

For hand gesture data, we divide the motions into three data sets. Each data set has
data for 110 different motions, and includes data of one of the three similar motions.
Sequentially, we use two data sets for training, and the third data set for testing.
Three test cases have been run, with one different data set used for testing in each
test case. For motion capture data, five data sets are obtained by having each data
sets to include 60 different motions, one for each class. All the experiments were
performed on a 3.0 GHz Intel processor of a Genuine Intel Linux box, and the code
was implemented in C/C++.

The performance has been validated using K -fold cross validation (with K = 3
for hand gesture motions and K = 5 for the captured motions). Figure 7.11 illustrates
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Fig. 7.11. K -fold cross-validation data sets for hand gesture data, where K = 3.

the partitioning of the hand gesture data sets for the K -fold validation (with K = 3)
and (a), (b), and (c) correspond to the cases with the data sets 1, 2, and 3 being
the respective testing data sets. We define the accuracy as the percentage of motions
classified or recognized correctly.

Figures 7.12 and 7.13 show that classifiers with decision values outperform clas-
sifiers with probability estimates whereas classification of the two different feature
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Fig. 7.12. Hand gesture classification accuracy. SVM classifiers with decision values and with

probability estimates are compared, and two different feature vectors are also compared.
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Fig. 7.13. Motion capture pattern classification accuracy.

vectors can give 95–100% accuracy using both classifiers. This observation implies
that although classifiers with probability estimates are more suitable than classifiers
with decision values for some other applications, such as motion stream segmen-
tation, the accuracy might decrease because of probability estimation. Classifiers
with decision values are considered below for further comparison with similarity
measures.

Figure 7.14 shows that SVM outperforms all similarity measures except kWAS,
which includes more information than the feature vectors extracted for classification.
Nevertheless, SVM classifiers still give more than 97% accuracy. In comparison, the
two similar motions in each training class are used as patterns for computation of
similarity with motions in the testing data set using similarity measures. Motions in
the testing data sets were recognized as the corresponding patterns with the highest
similarities.

Only one pattern for each different motion is usually assumed for similarity com-
putation using similarity measures, while multiple similar motions are assumed for
each class in the training of the SVMs. Figure 7.15 shows the recognition accuracies
using similarity measures when only one pattern is used for each different motion.
The proposed SVM classification approach obviously outperforms all the similarity
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Fig. 7.16. Motion capture pattern classification accuracy of different approaches when four

training patterns in each class are used for similarity testing.

measures in finding the most similar patterns or correctly classifying new motion
patterns for all testing data sets.

Similar observations can be made for motion capture data as shown in Figures
7.16 and 7.17.

The CPU times taken by SVM classification and similarity measures are shown
in Figure 7.18. For motion capture patterns, the proposed SVM classification takes
CPU time comparable to that needed by MAS and kWAS, and takes less time than
weighted-sum SVD and Eros. For CyberGlove patterns, classification by SVM takes
a little more time than all the similarity measure approaches. We observed that after
feature vectors have been extracted, classifying a CyberGlove pattern takes about
3.4 ms while classifying a motion capture takes only 1.1 ms. This is true although
the feature vectors of CyberGlove patterns have only 44 attributes while the feature
vectors of motion capture patterns have 108 attributes.

7.6.4 Discussion

After classification, DTW distance can be used to further determine motion directions
if any class has motions following similar trajectories in different directions as dis-
cussed in [1]. The motions experimented with in this chapter, including hand gestures
and captured human motions, were generated with different durations, and different
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motion components can have different generation rates, showing that motions with
different lengths and temporal disalignments can be effectively classified.

The weighted-sum SVD similarity measure computes the inner products of all
the corresponding singular vectors weighted by their singular values, and takes the
minimum of two sums of the inner products as the similarity measure of two matrices.
Since the inner products of singular vectors can be both positive and negative, and
the weights can be the singular values of either matrix, it is very likely that the
weighted sum can drop or jump sharply even if a testing matrix approximately matches
some training motion. In contrast, MAS does not consider all singular vectors for the
similarity definition. It considers only the dominating first singular vectors and the
singular values. By generating a new vector from the normalized singular values,
MAS takes into consideration both the dominating direction and the shape of the
motion data hyper-ellipsoid, while noises caused by variations of similar motions
are reduced by not considering other singular vectors. Eros and kWAS both consider
angular similarities of corresponding singular vector pairs, yet they differ in weighting
the angular similarities. Eros uses the same weight vector for all patterns, while
kWAS uses singular values of corresponding patterns as angular similarity weights,
and the weights are different for different patterns. In contrast, the feature vectors
we proposed in this chapter consider the dominating singular vectors, and similar
to kWAS, the singular vectors are weighted by their associated singular values. The
feature vectors do not consider as much information as kWAS; hence, SVM classifiers
cannot outperform kWAS if all motion patterns are considered for comparison. More
singular vectors have been experimented for feature vector extracted, yet no obvious
performance increases can be observed.

7.7 Conclusion

We have shown that by reducing multiattribute motion data into feature vectors by
different approaches, SVM classifiers can be used to efficiently classify multiattribute
motion data. Feature vectors are close to each other for similar motions, and are
different for different motions as shown by the high accuracies of SVM classification
we have achieved. RBF function has been used as the kernel function in this chapter,
although other kernel functions can also be provided to the SVMs during the training
process, which selects a small number of support vectors for the hyperplanes. The
high accuracy and low CPU testing time make SVMs a feasible technique to classify
and recognize multiattribute data in real time.

Using only a single motion pattern in the database to recognize similar motions
allows for less variations in similar motion as shown in Figure 7.15 and Figure 7.17.
By reducing multiattribute motion data into feature vectors, and using a group of
feature vectors for a class, a new motion has higher expected probability of being
recognized by SVMs as optimal hyperplanes are obtained during the training phase.

Two different approaches are explored to extract feature vectors. The first ap-
proach considers the first singular vectors and the normalized singular values, while
the second approach takes into account the first two dominating singular vectors
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weighted by their associated singular values. Motions are classified irrespective of
their directions at first, and taking into consideration the first left singular vectors by
using DTW can further distinguish motions following similar trajectories in different
directions [1].

Our experiments with hand gestures and various captured dances further show that
SVM classifiers with decision values outperform SVM classifiers with probability
estimates. We have addressed the problem of real-time recognition of individual
isolated motions accurately and efficiently. Further work needs to be done to explore
the feasibilities of the two feature vector extraction approaches for segmenting and
recognizing motion streams.
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8. FAST: Fast and Semantics-Tailored
Image Retrieval

Ruofei Zhang and Zhongfei (Mark) Zhang

Summary. This chapter focuses on developing a Fast And Semantics-Tailored (FAST) image

retrieval methodology. Specifically, the contributions of FAST methodology to the CBIR liter-

ature include (1) development of a new indexing method based on fuzzy logic to incorporate

color, texture, and shape information into a region-based approach to improving the retrieval

effectiveness and robustness, (2) development of a new hierarchical indexing structure and

the corresponding Hierarchical, Elimination-based A* Retrieval algorithm (HEAR) to signifi-

cantly improve the retrieval efficiency without sacrificing the retrieval effectiveness; it is shown

that HEAR is guaranteed to deliver a logarithm search in the average case and, (3) employment

of user relevance feedbacks to tailor the semantic retrieval to each user’s individualized query

preference through the novel Indexing Tree Pruning (ITP) and Adaptive Region Weight Updat-

ing (ARWU) algorithms. Theoretical analysis and experimental evaluations show that FAST

methodology holds a great promise in delivering fast and semantics-tailored image retrieval in

CBIR.

8.1 Introduction

This work addresses the topic of general purpose content-based image retrieval
(CBIR). CBIR has received intensive attention in the literature since this area was
started a few years ago, and consequently a broad range of techniques [1] is proposed.

The majority of the early research focuses on global features of imagery. The most
fundamental and popularly used feature is the color histogram and its variants, which
was used in the classic systems such as IBM QBIC [2] and Berkeley Chabot [3].
Since color histograms do not carry spatial information, which is considered to be
related to the semantics of image content, efforts have been reported in the literature to
incorporate the spatial information into the histograms. Pass and Zabih [4] proposed
the Color Coherence Vector (CCV) to address this issue. Huang et al. [5] went further
to use the Color Correlograms to integrate color and spatial information.

Recently region-based approaches have been shown to be more effective. A
region-based retrieval system segments images into regions, and retrieves images
based on the similarities derived from the regions. Berkeley Blobworld [6] and
UCSB NeTra [7] compared images on the basis of individual regions. To query
an image, the user was required to select regions and the corresponding features for
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the similarity computation. Wang et al. [8] proposed an integrated region matching
scheme called IRM, which allowed matching a region in one image to several re-
gions in another image. As a result, the similarity between two images was defined
as the weighed sum of distances, in a feature space, between all regions from differ-
ent images. Later, Chen and Wang [9] proposed an improved approach called UFM
based on applying coarse fuzzy logic to the different region features to improve the
retrieval effectiveness of IRM. Recently Jing et al. [10] presented a region-based,
modified inverted file structure analogous to that in text retrieval to index the image
database; each entry of the file corresponded to a cluster (called codeword) in the
region space. While this method is reported to be effective, the selection of the size
of the code book is subjective in nature, and the effectiveness is sensitive to this
selection.

To narrow the semantic gap in image retrieval, several recent efforts in CBIR,
such as [11] and [12], performed the image retrieval not only based on the con-
tent but also based on user preference profiles. Machine learning techniques such
as Support Vector Machine (SVM) [13] and Bayesian network [14] were applied to
learn the user’s query intention through leveraging preference profiles or relevance
feedbacks. One drawback of such approaches is that they typically work well only for
one specific domain, for example, art image database or medical image database. It
has been shown that for a general domain the retrieval accuracy of these approaches is
weak [1]. In addition, these approaches are restricted by the availability of user pref-
erence profiles and the generalization limitation of machine learning techniques they
applied.

While the majority of the literature in CBIR focuses on the indexing and retrieval
effectiveness issue, much less attention is paid to the indexing and retrieval efficiency
issue. Historically, CBIR research is motivated in the beginning to demonstrate that
indexing directly in the image domain can deliver better retrieval effectiveness than
indexing through collateral information such as key words, and this perception has
been carried on over the years; the retrieval efficiency issue, on the other hand, is
not considered to be the focus of the research in the CBIR community, as the gen-
eral perception is that this issue may be resolved by directly making use of the
existing indexing methods developed from the spatial data structure research. Sev-
eral spatial data structures have been proposed in the literature. Among these data
structures, some are based on the ideas of B+- and B-trees [15], which initially are
for organizing 1-D feature vectors or single valued keys of stored items, such as
multidimensional B+-tree [16], while others perform feature searching and updating
by “ordering” the multidimensional features either based on feature space partition
and filtering, such as k-d tree [17], R-tree [18, 19] and its variants, R∗-tree [20],
R+-tree [21], and TV-tree [22], or by similarity measuring [23]. Another data or-
ganization method is the grid file [24], by which an n-dimensional space is divided
into equal-sized hypercubes with each hypercube containing zero or more feature
vectors. In grid file search, the search scope is reduced from the whole feature space
to a hypercube (grid) to facilitate data insertion. However, this classical method is
not suitable for very high-dimensional vectors, which are common in multimedia
processing.
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There are several problems when applying these generic data structures in CBIR
directly. First, technically many CBIR algorithms involve complicated distributions
in a high-dimensional feature space, and it is difficult and inflexible to directly “order”
features in such a high-dimensional space using the existing spatial data structures.
Second, while theoretically any CBIR methods can use the existing spatial data struc-
tures to address the retrieval efficiency, practically this is not the case because when
the dimensionality becomes very high (which is true for almost all the CBIR meth-
ods) the overhead for online bookkeeping becomes so demanding [25] that the overall
saving in efficiency becomes questionable. Some data structures, such as SS-tree [26]
and TV-tree [22], attempt to address this problem, but their overall performances are
limited because of the assumptions they are subject to [27]. Third, the existing spatial
data structures do not work well for region-based image indexing approaches due
to the fact that the mapping between the region space and the image space is typi-
cally nonmetric [8–10]. Consequently, a few efforts in the literature have attempted
to address the efficiency issue directly in designing specific CBIR algorithms. For ex-
ample, Berman and Shapiro [28] used a set of keys along with the triangle inequality
in image databases for fast search.

Since the evaluation of CBIR retrieval is typically subjective, in recent years
methods incorporating user relevance feedbacks start to show promise in resolving
this issue. Two directions of research are observed in incorporating user relevance
feedback in CBIR: (1) developing a weighting scheme to explicitly “guide” the re-
trieval [29] and (2) applying machine learning techniques such as Bayesian net and
Support Vector Machine to reduce the problem to a standard reasoning and classifi-
cation problem [30, 31].

On the basis of an extensive literature review, we have identified three problems
in the current status of CBIR research: (1) the indexing effectiveness still needs to be
improved; (2) the retrieval efficiency needs to be addressed directly in the indexing
method; and (3) the retrieval subjectivity issue needs to be further addressed to better
deliver a semantic retrieval. This work is motivated to address these three issues
simultaneously. The ultimate goal of this project is to design a CBIR methodology
that can deliver fast and semantics-tailored image retrieval capability. By fast, we
mean that the efficiency issue is well addressed; by semantics-tailored, we mean that
the user query preference is inferred online to allow an individualized retrieval to
better address the retrieval effectiveness and user preference issues. Consequently,
we call the methodology FAST. The contributions of FAST are reflected in these
three aspects. An overview of the architecture of FAST is shown in Figure 8.1.

The remainder of this chapter addresses these aspects of FAST methodology in
detail. Section 8.2 describes the fuzzified feature representation and indexing scheme.
The region matching and similarity computation metrics are also provided in this sec-
tion. The proposed hierarchical indexing structure and the Hierarchical, Elimination-
based A* Retrieval (HEAR) online search algorithm are presented in Section 8.3.
Section 8.4 describes the developed Indexing Tree Pruning (ITP) and the Adaptive
Region Weight Updating (ARWU) algorithms to capture users’ retrieval subjectivity.
Section 8.5 presents the empirical evaluations of a FAST prototype. The chapter is
concluded in Section 8.6.
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Fig. 8.1. Overview of the architecture of FAST.

8.2 Fuzzified Feature Representation and Indexing Scheme

We propose an efficient, clustering-based, fuzzified feature representation approach
to addressing the general-purpose CBIR. In this approach we integrate semantics-
intensive, clustering-based segmentation with fuzzy representation of color his-
togram, texture, and shape to index image databases.

8.2.1 Image Segmentation

In our system, the query image and all images in the database are first segmented
into regions. The fuzzy features of color, texture, and shape are extracted to be the
signature of each region in one image. The image segmentation is based on the color
and spatial variation features using the k-means algorithm [32]. We use this algorithm
to perform the image segmentation because it is unsupervised and efficient, which
is crucial to segment general-purpose images such as the images in the World Wide
Web. To segment an image, the system first partitions the image into blocks with
4 × 4 pixels to compromise between texture effectiveness and computation time, and
then extracts a feature vector consisting of six features from each block. Three of
them are average color components in a 4 × 4 pixel size block. We use the LAB color



P1: OTE/SPH P2: OTE

SVNY295-Petrushin September 15, 2006 12:47

8. FAST: Fast and Semantics-Tailored Image Retrieval 145

space due to its desired property that the perceptual color difference is proportional to
the numerical difference. These features are denoted as {C1, C2, C3}. The other three
features represent energy in the high-frequency bands of the Haar wavelet transform
[33], that is, the square root of the second order moment of the wavelet coefficients
in the high-frequency bands. To obtain these moments, a Haar wavelet transform
is applied to the L component of each pixel. After a one-level wavelet transform,
a 4 × 4 block is decomposed into four frequency bands; each band contains 2 × 2
coefficients. Without loss of generality, suppose that the coefficients in the H L band
are {ck,l , ck,l+1, ck+1,l , ck+1,l+1}. Then we compute one feature of this block in H L
band as

f =
√√√√1

4

1∑
i=0

1∑
j=0

ck+i,l+ j (8.1)

The other two features are computed similarly from the LH and HH band. These
three features of the block are denoted as {T1, T2, T3}. They can be used to discern
texture by showing L variations in different directions. After we have obtained feature
vectors for all blocks, we perform normalization on both color and texture features to
whiten them such that the effects of different feature ranges are eliminated. Then the
k-means algorithm [32] is used to cluster the feature vectors into several classes with
each class corresponding to one region in the segmented image. Since the clustering
is performed in the feature space, blocks in each cluster do not necessarily form
a connected region in the image. Consequently, we preserve the natural clustering
of objects in general-purpose images. The k-means algorithm does not specify how
many clusters to choose. We adaptively select the number of clusters C by gradually
increasing C until a stop criterion is met. The average number of clusters for all
images in the database varies according to the adjusted stop criterion. In the k-means
algorithm we use a color-texture weighted L2 distance metric

√√√√wc

3∑
i=1

(
C (1)

i − C (2)
i

)2 + wt

3∑
i=1

(
T (1)

i − T (2)
i

)2
(8.2)

to describe the distance between the features of blocks, where the C (1)(C (2)) and
T (1)(T (2)) are color features and texture features, respectively, of block 1(2). wc and
wt are the weights specified in specific experiments. After the segmentation, three
additional features are determined for each region to describe the shape property. They
are normalized inertia [34] of order 1 to 3. For a region H in the two-dimensional
Euclidean integer space Z

2 (an image), its normalized inertia of order p is

l(H, p) =
∑

(x,y):(x,y)∈H [(x − x̂)2 + (y − ŷ)2]p/2

[V (H )]1+p/2
(8.3)

where V (H ) is the number of pixels in the region H and (x̂, ŷ) is the centroid of
H . The minimum normalized inertia is achieved by spheres. Denoting the pth order
normalized inertia of spheres as L p, we define the following three features to describe
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the shape of each region:

S1 = l(H, 1)/L1, S2 = l(H, 2)/L2, S3 = l(H, 3)/L3 (8.4)

8.2.2 Fuzzy Color Histogram for Each Region

The color representation would be coarse and imprecise if we simply extract the block
color feature to index each region as Wang et al. [8] proposed. Color is one of the
most fundamental properties to discriminate images so that we should take advantage
of all available information in it. Considering the typical uncertainty stemmed from
color quantization and human perception, we develop a modified color histogram,
using the fuzzy technique [35, 36] to accommodate the uncertainty.

The fuzzy color histogram is defined as follows. We assume that each color is a
fuzzy set while the correlation among colors is modeled as a membership function of
different fuzzy sets. A fuzzy set F on the feature space Rn is defined as a mapping
μF : Rn → [0, 1] with μF as the membership function. For any feature vector f ∈
Rn , the value of μF ( f ) is called the degree of membership of f to the fuzzy set F
(or, in short, the degree of membership to F). A value closer to 1 for μF ( f ) means
more representative the feature vector f to the fuzzy set F .

An ideal fuzzy color model should have the resemblance inversely proportional to
the intercolor distance. Based on this requirement, the most commonly used prototype
membership functions include conic, trapezoidal, B-splines, exponential, Cauchy, and
paired sigmoid functions [37]. We have tested the conic, trapezoidal, exponential,
and Cauchy functions on our system. In general, the performances of the exponential
and the Cauchy functions are better than those of the conic and trapezoidal functions.
Considering the computational complexity, we use the Cauchy function due to its
computational simplicity. The Cauchy function, C : Rn → [0, 1], is defined as

C(�x) = 1

1 + ( ‖�x−�v‖
d

)α (8.5)

where �v ∈ Rn , d and α ∈ R, d > 0, α ≥ 0, �v is the center location (point) of the
fuzzy set, d represents the width of the function, and α determines the shape (or
smoothness) of the function. Collectively, d and α describe the grade of fuzziness of
the corresponding fuzzy feature.

Accordingly, the color resemblance in a region is defined as

μc(c′) = 1

1 + ( d(c,c′)
σ

)α
(8.6)

where d is the Euclidean distance between color c and c′ in the LAB space, and σ is
the average distance between colors

σ = 2

B(B − 1)

B−1∑
i=1

B∑
k=i+1

d(c, c′) (8.7)

where B is the number of bins in the color partition. The average distance between
colors is used to approximate the appropriate width of the fuzzy membership function.
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The experiments show that the color model performance changes insignificantly when
α is in the interval [0.7, 1.5], but degrades rapidly outside the interval. We set α = 1
in Eq. (8.6) to simplify the computation.

This fuzzy color model enables us to enlarge the influence of a given color to its
neighboring colors according to the uncertainty principle and the perceptual similarity.
This means that each time a color c is found in the image, it influences all the
quantized colors according to their resemblance to the color c. Numerically, this
could be expressed as

h2(c) =
∑
c′∈μ

h1(c′)μc(c′) (8.8)

where μ is the color universe in the image and h1(c′) is the usual normalized color
histogram. Finally the normalized fuzzy color histogram is computed as

h(c) = h2(c)

maxc′∈μ h2(c′)
(8.9)

which falls in the interval [0,1].
Note that this fuzzy histogram operation is in fact a linear convolution between

the “regular” color histogram and the fuzzy color model. This convolution expresses
the histogram smoothing, provided that the color model is indeed a smoothing, low-
pass filtering kernel. The use of the Cauchy function as the color model produces the
smoothed histogram, which is a mean for the reduction of the quantization errors [38].

In the FAST prototype implementation, the LAB color space is quantized into 96
bins by using uniform quantization (L by 6, A by 4, and B by 4). To reduce the online
computation, for each bin μc(c′) is precomputed and implemented as a lookup table.

8.2.3 Fuzzy Representation of Texture and Shape for Each Region

To accommodate the imprecise image segmentation and uncertainty of human per-
ception, we propose to fuzzify each region generated in image segmentation using
a parameterized membership function. The parameter for the membership function
is determined on the basis of the clustering results of blocks. Similar to the color
features, the fuzzification of the texture and shape feature vectors again brings a cru-
cial improvement into the region representation of an image: fuzzy features naturally
characterize the gradual transition between regions within an image. In our proposed
representation scheme, a fuzzy feature set assigns weights, called degree of mem-
bership, to feature vectors of each block in the feature space. As a result, the feature
vector of a block belongs to multiple regions with different degrees of membership
as opposed to the classical region representation, in which a feature vector belongs to
exactly one region. We first discuss the fuzzification of the texture features, and then
discuss that of the shape features.

We take each region as a fuzzy set of blocks. In order to propose a unified ap-
proach consistent with the fuzzy color histogram representation, we again use Cauchy
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function to be the fuzzy membership function, that is,

μi ( f ) = 1

1 + ( d( f, f̂i )
σ

)α
(8.10)

where f ∈ Rk (here k = 3) is the texture feature vector of each block, f̂i is the
average texture feature vector of region i , d is the Euclidean distance between f̂i and
any feature f , and σ represents the average distance for texture features among the
cluster centers obtained from the k-means algorithm. σ is defined as

σ = 2

C(C − 1)

C−1∑
i=1

C∑
k=i+1

‖ f̂i − f̂k‖ (8.11)

where C is the number of regions in a segmented image, and f̂i is the average texture
feature vector of region i .

Making use of this block membership function, the fuzzified texture properties of
region i is represented as

�fi
T =

∑
f ∈U T

f μi ( f ) (8.12)

where U T is the feature space composed by texture features of all blocks.
On the basis of the fuzzy membership function μi ( f ) obtained in a similar fashion,

we also fuzzify the shape property representation of region i by modifying Eq. (8.3)
as

l(i, p) =
∑

f ∈U S [( fx −x̂)2+( fy−ŷ)2]p/2μi ( f )

[N ]1+p/2
(8.13)

where fx and fy are the x and y coordinates of the block with the shape feature f ,
respectively; x̂ and ŷ are the x and y central coordinates of the region i , respectively;
and N is the number of blocks in an image and U S is the block feature space in an
image. On the basis of Eqs. (8.4) and Eq. (8.13), we determine the fuzzified shape
feature of each region, denoted as �fi

S .

8.2.4 Region Matching and Similarity Determination

Once we have fuzzified representations for color, texture, and shape features, we
apply the normalization on these features before they are written to the index files.
For each region, we record the following information as its indexed data: (1) fuzzy
color histogram h(c); (2) fuzzy texture feature �f T ; (3) fuzzy shape feature �f S; (4) the
relative size of the region to the whole image w; and (5) the central coordinate of
the region area (x̂, ŷ). Such indexed data of all regions in an image are recorded as
the signature of the image.

Based on the fuzzified features for regions in every image, a fuzzy matching
scheme is developed to determine the distance between any two regions p and q as
well as the overall similarity between images. For fuzzy texture and shape features,
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we apply the L2 distance formula as

d pq
T = ∥∥ �f p

T − �fq
T ∥∥

and

d pq
S = ∥∥ �f p

S − �fq
S∥∥

respectively.
For fuzzy histogram, we use the distance formula

d pq
C =

√∑B
i=1[h p(i) − hq (i)]2

B
(8.14)

where B is the number of bins, and h p(i) and hq (i) are fuzzy histogram of region p
and q , respectively.

The intercluster distance on color and texture between region p and q is defined
as

d pq
CT =

√
d pq

C
2 + d pq

T
2

(8.15)

The overall distance between two regions is defined as follows:

DIST(p, q) = wd pq
CT + (1 − w)d pq

S (8.16)

where w is a weight. In the current FAST prototype, we set w = 0.7 to purposively
give color and texture more weight than shape, as we have found that the shape
features are more vulnerable to the segmentation.

Since image segmentation is usually not perfect, a region in one image could
correspond to several regions in another image. Consequently, we construct an image
distance measure through the following steps. Suppose that we have M regions in
image 1 and N regions in image 2.

Step 1: Determine the distance between one region in image 1 and all regions in
image 2. For each region i in image 1, the distance between this region and image 2
is

Ri,Image2 = min DIST(i, j) (8.17)

where j is each region in image 2.
Step 2: Similarly, we determine the distance between a region j in image 2 and

image 1

R j,Image1 = min DIST( j, i) (8.18)

where i is each region in image 1.
Step 3: After obtaining the M + N distances, we define the distance between the

two images (1 and 2) as

DistIge(1, 2) =
∑M

i=1 w1i Ri,Image2 + ∑N
j=1 w2 j R jImage1

2
(8.19)

where w1i is the weight for each region in image 1 and w2 j is the weight for each
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region in image 2. We set w1i = N1i
N1

, where N1i is the number of blocks in region i and
N1 is the total number of blocks in image 1. w2 j is defined similarly. In other words,
larger regions are given more significance than smaller regions because we believe
that large regions are more semantically related to the content of an image. Clearly,
DistIge(1, 2) = 0 if image 1 and image 2 are identical, and DistIge(1, 2) becomes
larger when image 1 and image 2 differ more substantially. Consequently, for each
query q, DistIge(q, d) is determined for each image d in the database and relevant
images are retrieved through sorting the similarities DistIge(q, d).

8.3 Hierarchical Indexing Structure and HEAR Online Search

To achieve fast retrieval, we have designed a hierarchical indexing structure in the
database and a related online search algorithm to avoid the linear search. An optimal
indexing structure is defined in the region space such that a query image needs to be
compared only with those in the database that have at least one region that is most
similar to a region in the query image, given a specified similarity.

Let S denote the set of all the nodes in the indexing structure, and X be the set
of all the regions in the database. Each node s ∈ S is a set of regions Xs ⊂ X with a
feature vector zs , the centroid of the region feature set Fs in the node. The children
of a node s ∈ S are denoted as c(s) ⊂ S. The child nodes partition the region space
of the parent node such that

Xs =
⋃

r∈c(s)

Xr (8.20)

Now the question is how to construct such an optimal indexing structure. Recall that
we have used a modified k-means algorithm in the image segmentation to form all the
regions. After all the images in the database are indexed on the basis of the indexing
scheme in Section 8.2, we apply the same k-means algorithm again to all the feature
vectors corresponding to all the regions of all the images recursively to form the
hierarchy of the indexing structure. All the nodes represent centroid feature vectors
of a corresponding set of regions except for the leaf nodes, which, in addition to a set
of regions belonging to the corresponding cluster, also record IDs of images that share
one region with the feature vectors of the regions in that set. The depth of the indexing
structure is determined adaptively on the basis of the size of the image database. The
resulting indexing tree is called the Hierarchical Indexing Structure.

Typical search algorithms would traverse the tree top-down, selecting the branch
that minimizing distance between a query q and a cluster centroid zs . However, this
search strategy is not optimal since it does not allow backtracking. To achieve an
optimal search, we apply A* search algorithm [14] by keeping track of all nodes that
have been searched and always selecting the nodes with minimum distance to the
query region. The A* search is guaranteed to select the cluster whose centroid has the
minimum distance in the set of visited nodes to the query region. Hence, it is optimal.

Note that in general the image set associated with a leaf node is significantly
smaller than the original image set in the database. We show that this reduced image set
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may be further filtered in the online query search by exploiting the triangle inequality
principle. Recall that the similarity function between two regions defined in Eq. 8.16
is metric, given two regions p and q associated with two images in the image set of a
leaf node in the indexing tree. We have

DIST(p, q) ≥ |DIST(p, z) − DIST(q, z)| (8.21)

where DIST(p, q) is the distance between regions p and q; z denotes a key region
feature represented by the centroid of the corresponding leaf node (cluster). Consider
a set of I regions Xh = {xh1, xh2, . . . , xhI } at leaf node h and a key region feature
zh . Pre-calculating DIST(xhi , zh), for i = 1 to I , results in a linear table of I entries.
To find those regions x ∈ Xh at node h such that DIST(r, x) ≤ t for a query region
r and the predefined threshold t , we note that the lower bounds on DIST(r, x) exist
by determining DIST(r, zh), DIST(xhi , zh) and repeatedly applying Eq. ((8.21)). If
|DIST(r, zh) − DIST(xhi , zh)| > t , x can be safely eliminated from the linear table of
I entries, resulting in avoiding search for all the entries in the table. Thus, given a
query, we have the retrieval algorithm described in Figure 8.2 called the Hierarchical,
Elimination-based A* Retrieval (HEAR), and the theorem stated in Theorem 8.1
guaranteeing the logarithm complexity in average case performance for HEAR.

The symbols used in the HEAR algorithm are introduced as follows.

input : q, the query image

output : �, Images retrieved for the query image q
begin

for For each region r in the query image q do
s∗ = root ;

� = {s∗};
NodesSearched = 0;

while s∗ is not a node of desired tree depth do
� ← (� − {s∗}) ∪ c(s∗);

NodesSearched = NodesSearched + |c(s∗)|;
s∗ ← arg mins∈�(DI ST (r, zs));

end
� = {};
for each region p in the node s∗ do

if |DI ST (p, zs) − DI ST (r, zs)| ≤ t then
� ← � ∪ {p};

end
end
�r ={Images having regions in set �};

end
� = ⋃m

r=1 �r ;

end

Fig. 8.2. HEAR Algorithm.
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m is the number of regions in the query image; s∗ is the cluster whose centroid
has the minimum distance to the query region r ; � is the cluster set we have searched;
|c(s∗)| is the size of the child set of s∗; zs is the cluster centroid; NodesSearched records
the number of nodes we have searched so far; and t is the predefined threshold of the
distance between a region and a query region. The resulting � is the final image set
to be compared with the query image.

Theorem 8.1. In average case, FAST algorithm achieves the logarithm retrieval
efficiency.

Proof. Suppose that m is the average branching factor of the Hierarchical Indexing
Structure; n is the number of images in the database; l is the average number of re-
gions of an image; and k is the height of the indexing tree. Then nl is the total number
of regions. In the average case, it is clear that when k ≥ logm nl − logm(logmnl), the
number of regions in a leaf node w ≤ logm nl. In the selected leaf node s∗, the triangle
inequality principle is applied. Without loss of generality, suppose that the distance
threshold ratio between a region and the centroid for the region to be selected as a can-
didate region is 1/τ . Consequently, the average number of regions selected to compare
with the query region is q ∝ w/τ 2 = logm nl

τ 2 . We call these regions candidate regions.
Each candidate region corresponds to one image in the database. Thus, the total num-
ber of images in the database to be compared with the query image is λlq = λl logm nl

τ 2 ,
where λ is the ratio that describes the region-to-image correspondence relationship,
λ ∈ [1/ l, 1]. Thus we observe that the average number of images to be compared is
bounded in

[ logm nl
τ 2 ,

l logm nl
τ 2

]
. l is determined by the resolution of the image segmenta-

tion, and typically is small (4 in the FAST prototype). τ is a constant. Hence, the com-
plexity of the online search algorithm HEAR is O(logmn) for a database of n images.

While any feature-based CBIR methods could apply a clustering algorithm recur-
sively to generate a hierarchy in the (typically high dimensional) feature space, we
argue that this does not work in general, and thus show that the contributions reflected
in Theorem 1 are unique and significant.

We define that a classification-based clustering in a feature space is spherically
separable [13] if for any cluster there is always a specific radius R for this cluster such
that for any feature vector v, v is in the cluster if and only if D(v, c) < R where c is
the centroid vector of the cluster and D is a metric distance measure. Given a CBIR
method, if the similarity measure is metric, and if the images are indexed in global
features (i.e., each image is indexed by a single feature vector in the image feature
space), in order to generate a hierarchy in the feature space by recursively clustering
the features of the whole image database, it would require that all the clusters be
spherically separable. Clearly this is not true as in a typical image feature space, the
distribution of the semantic classes in the feature space is rather complicated (e.g., it
is typical that one semantic class is contained by another, or two semantic classes are
completely “mixed” together), and thus the spherically separable property is by no
means satisfied. This is shown to be a well-known fact even in many special domain
image classification or clustering problems such as in face image classification [39],
not even speaking for the general domain image retrieval. On the other hand, if the
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similarity measure is not metric, it would not be possible to generate a hierarchy in
a feature space based on the recursive applications of a clustering algorithm as the
clustering presumes a metric distance measure. Consequently, the only possibility to
generate such an indexing hierarchy is to use a nonglobal feature, that is, to build up
this hierarchy in a feature space other than the image feature space. The significance of
the development of the Hierarchical Indexing Structure as well as the related HEAR
online search algorithm reflected through Theorem 8.1 is that we have explicitly
developed an indexing scheme in the regional feature space and we have shown that
even with this “detour” through the regional feature space, we can still promise a
logarithm search complexity in the average case in the image feature space.

We develop the Hierarchical Indexing Structure in the regional feature space
based on the following three reasons. First, since the features we have developed
to index images are based on the regional feature space, it is natural to build up
an indexing hierarchy in the regional feature space. Second, the similarity measure
defined in FAST is not metric, and thus it is not possible to directly build up an
indexing hierarchy in the image feature space. Third, after segmentations of an image
into regions, the features in the regional feature space are essentially “uniform,” and
consequently they are able to satisfy the spherically separable property in the regional
feature space, which is required for the construction of the hierarchy using clustering.

Apart from the above discussions of the Hierarchical Indexing Structure, it is also
interesting to compare it with the existing high-dimensional indexing structures, for
example, R-tree and its derivative indexing trees. It has been demonstrated that the
search efficiency of an R-tree is largely determined by the coverage and overlap [27].
The coverage of a level of an R-tree is the total area of all the rectangles associated with
the nodes of that level. The overlap of a level of an R-tree is the total area contained
within two or more nodes. Efficient R-tree search demands that both the coverage
and overlap be minimized. From the point of view of R-tree-based multidimensional
access structures, the proposed Hierarchical Indexing Structure has two advantages.
First, the nodes in each level have no overlap since each region feature belongs to
only one cluster (node). With this property, multiple-path traversal is avoided, which
improves the search efficiency significantly. Second, the search on the Hierarchical
Indexing Structure does not depend on the node coverage because no dimension
comparisons are required to decide the branch in HEAR. In other words, the minimum
bounding region (MBR) of each internal node in the Hierarchical Indexing Structure
is determined by the region features per se and can be any possible shape. With the
nonoverlapping property between internal nodes of each level and MBR-coverage
independent search in HEAR, the efficiency of the Hierarchical Indexing Structure
is enhanced as compared with the discussed R-tree as well as its derivative data
structures for region-based CBIR.

8.4 Addressing User’s Subjectivity Using ITP and ARWU

To achieve semantics-tailored retrieval, we must address the human perception sub-
jectivity [40] issue in CBIR. This is resolved through the ITP and ARWU algorithms
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we have developed with user query preference inferred to deliver individualized
retrieval.

Since the relevance subjectivity in FAST resides at the region level as opposed to
at the image level, ideally we would like to ask users to indicate the relevant regions
in each retrieval, which would add complexity in user interface and users’ interaction.
As a compromise, FAST assumes that users cast only yes (+) or no (−) vote to each
retrieved image as the data collected in the user relevance feedback. Based on this
very “qualitative” user relevance feedback, the feedback data is typically sparse and
limited. We have developed an algorithm to infer the user preference in order to tailor
to the intended retrieval semantics from a sparse distribution of this “qualitative”
data. Moreover, we take the advantage of this user relevance feedback information to
further expedite the subsequent query search, resulting in achieving the two goals of
fast and semantics-tailored retrieval simultaneously.

We note the fact that the similar (common) regions among relevant images are im-
portant to characterize relevant images whereas the similar (common) regions among
irrelevant images are important to distinguish the retrieved irrelevant images from
the relevant images [40]. Assuming that a user personal preference of the intended
retrieval semantics is consistent over the whole session of the retrieval, we develop
a user relevance feedback algorithm called Indexing Tree Pruning (ITP). The idea of
ITP is that we use the k-means algorithm to infer the “typical” regions from the im-
ages voted as relevant, and the “typical” regions from the images voted as irrelevant,
based on which a standard two-class support vector machine (SVM) [13] is used to
generate a separation hyperplane in the region feature space, which in turn “cuts” the
space into two halves; the subsequent search may be further constrained to focus on
the relevant side of the Hierarchical Indexing Structure using HEAR. Specifically, the
ITP algorithm is described in Figure 8.3.

Figure 8.4 illustrates an example of the original indexing tree and one session tree
after the pruning using ITP. The actual pruning is done through applying the DBT
algorithm [41]. Note that ITP differs from the existing SVM-based user relevance
feedback algorithms, such as [42], which typically require a large number of voted
samples to obtain a classifier in the feature space. In ITP, the SVM is not used directly
to perform image retrieval; instead, it is used to guide a coarse filtering (pruning)
such that the Hierarchical Indexing Structure in the database can be tuned in favor of
the user’s relevancy intention. In Section 5, we shall see that with a relatively small
number of leaf nodes (<1000) and reasonable dimensionality of a feature space (9 in
the indexing scheme), a relatively small number (15–30) of voted images can boost
the performance well, and further expedite the subsequent retrieval at the same time.

While ITP is able to infer the relevancy and irrelevancy from the voted images, we
make a further effort in attempting to infer the degree of the relevancy or irrelevancy.
Following the “most similar, highest priority (MSHP)” principle [8], we can adaptively
update the region weights in Eq. (8.19) based on the feedback data. We implement
this idea and call it the Adaptive Region Weight Updating (ARWU) algorithm.

The idea of ARWU is as follows. The cardinality of a cluster to which a query
region belongs in the relevant region space is an indicator of the commonality of this
region to the relevant image set. With the voted relevant and irrelevant images, for
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input : Images users labeled

output : �, Images retrieved after learning

begin
Initialization, set RegR = {}; RegI = {};
Applying the modified k-means clustering algorithm on the region subspace consisting of
relevant images, m cluster are obtained. They are sorted in terms of their number of regions,
denoted as S R = {R1, R2, . . . , Rm}, where ‖Ri‖ ≥ ‖R j‖ for i < j ;

Applying the modified k-means clustering algorithm on the region subspace consisting of
irrelevant images, n cluster are obtained. They are sorted in terms of their number of regions,
denoted as SI = {I1, I2, . . . , In} , where ‖Ii‖ ≥ ‖I j‖ for i < j ;

RegR ← RegR ∪ Rk , k = 1, . . . , p;

RegI ← RegI ∪ Ik , k = 1, . . . , q;

A Gaussian RBF based two-class SVM is applied on the relevant and irrelevant region sets
RegR and RegI to learn the hyperplane H, which separate the region space into relevancy
and irrelevancy parts;

Y = {}; X = {};
for the centroid of each leaf node in the indexing tree, ti do

Determine H (ti );

if H (ti ) ≥ 0 then
Y ← Y ∪ {ti };

else
X ← X ∪ {ti };

end
end
Pruning the indexing tree, reserving only ancestor nodes of Y to generate a session tree ST;

Performing online search algorithm HEAR on the session tree ST, return result �;

end

Fig. 8.3. ITP algorithm.

every region in the query image, the weights of the regions that are similar to the
regions in the relevant images but dissimilar to the regions in the irrelevant images
should increase, and otherwise the weights should decrease. For regions in each
target image (i.e., image to be compared with the query image), a high weight is
given to regions with a smaller distance to the query image, and in the meantime the
weight is adjusted to a higher value if it is the most similar to a query region with
a high weight already. Otherwise, the weight of the region is lowered accordingly.
Consequently, more importance weights are given to regions on which the user’s
query intention, learned from the feedback examples by ARWU, focuses. The essence
of this weight adjustment algorithm is a discriminant whitening transform learned
from both inferred relevant and irrelevant regions. In addition, the weights adjusted
still preserve a desired characteristic for the distance metric, that is, the distance
between two identical images equals to 0. ARWU is used in conjunction with ITP
for further improving semantics-tailored retrieval. The ARWU algorithm is shown in
Figure 8.5.
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Fig. 8.4. An example of an original index tree and one session tree after pruning using ITP.

(a) Original Indexing Tree (lettered leaf nodes are relevant and blank leaf nodes are irrelevant,

which are derived from the hyperplane function H); (b) The session tree after pruning.

input : q, the query image

output : Updated region weights

begin
for each region in the query image, Qi , i=1,. . . ,M do

the cluster containing it in the relevant image set is obtained as Ci , Ci ∈ S R, the
cluster containing it in the irrelevant image set is obtained as Di , Di ∈ SI ;

W Ri = ‖Ci ‖∑
k ‖Rk‖ ;

W Ii = ‖Di ‖∑
k ‖Ik‖ ;

W1i = ηi ∗W Ri∑M
k=1(ηk∗W Rk )

, where ηi = 1 − W Ii ;

end
for each region in a target image, Tj , j=1,. . . ,N, its most similar region in the query image
is denoted as Sj do

U j = W1S j

R j,I mage1
, where R j,I mage1 is the distance between this region, Tj , and the

query image, which is defined in Eq.(8.18);

The weight for each region is normalized as W2 j = U j∑N
k=1 Uk

;

end
Applying W1i and W2 j to Eq.(8.19) to determine the distance between the query image and
each target image;

end

Fig. 8.5. ARWU algorithm.
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In the algorithm, ηi acts as a penalty, reflecting the effect of negative examples to
each region in the query image.

8.5 Experimental Evaluations

We have implemented the FAST methodology in a prototype system. For the dis-
cussion and reference purpose, we also call the prototype FAST. The following re-
ported evaluations are performed in a general-purpose color image database contain-
ing 10,000 images from the COREL collection of 96 semantic categories, including
people, nature scene, building, and vehicles. No prerestriction on camera models,
lighting conditions, etc., are specified in the image database for the testing. These
images are all in JPEG format. We choose this database to test the FAST method-
ology because it is available to the public and is used in the evaluations of several
state-of-the-art CBIR systems, for example, IRM [43] and UFM [9]. The database is
accessible at http://www.fortune. binghamton.edu/download.html. Figure 8.6 shows
several samples of the images belonging to a few semantic categories in the database.
Each semantic category in this image database has 85–120 associated images. From
this database 1500 images are randomly selected from all the categories as the query
set. A retrieved image is considered a match if it belongs to the same category of the
query image. We note that the category information in the COREL collection is only
used to truth the evaluation; we do not make use of this information in the indexing
and retrieval.

The FAST prototype is implemented on a Pentium III 800 MHZ computer with
256 M memory. After performing the image segmentation described in Section 8.2.1,
the homogenous regions of each image are obtained. The original k-means clustering
algorithm [32] is modified to accommodate unknown number of regions in advance
in an image for image segmentation. We adaptively select the number of clusters C
by gradually increasing C until a stop criterion is met. The average number of regions
for all images in the database varies in accordance with the adjustment of the stop
criteria. The segmentation results indicate that the regions extracted are related to the
objects embodying image semantics. In the evaluation, 56,722 regions are extracted
in total for all the 10,000 images in the database, which means in average 5.68 regions
are extracted in each image. Image segmentation for the testing database takes 5.5 h
to complete, corresponding to about 1.9 s for each image.

For each image, the fuzzy color, texture, and shape features are determined for
each region. Based on these features of all regions extracted for the database, the
Hierarchical Indexing Structure of four level’s is constructed offline. All regions
are partitioned into several classes using the modified k-means algorithm. In this
evaluation, the total number of classes is determined to be 677 with the maximum
number of regions in one class is 194 and the minimum number of regions in one class
is 31. For each class, a hash table mapping between the associated regions and the
corresponding image names in the database is maintained. The generation of the four-
level Hierarchical Indexing Structure takes 70 min. While the entire indexing process
is offline, the online query processing is fast. In average, the query time for returning
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Fig. 8.6. Sample images in the testing database. The images in each column are assigned to

one category. From left to right, the categories are “Africa rural area,” “historical building,”

“waterfalls,” “British royal event,” and “model portrait,” respectively.

the top 30 images is less than 1 s. The retrieval interface of the FAST prototype is
shown in Figure 8.7.

FAST is evaluated against one of the state-of-the-art CBIR systems, UFM [9], on
the effectiveness comparison. Retrieval effectiveness is measured by the recall and
precision metrics [44]. For a given query and a given number of images retrieved,
the precision gives the ratio between the number of relevant images retrieved and the
number of retrieved images in total. The recall gives the ratio between the number of
relevant images retrieved and the total number of relevant images in the collection.

To test the effects of the Hierarchical Indexing Structure and the HEAR algo-
rithm, we have ported FAST into two separate versions: one with the original FAST
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Fig. 8.7. A screenshot of the FAST prototype. The query image is in the top left pane and the

retrieval results are returned in the right pane.

methodology (which uses the Hierarchical Indexing Structure in the region feature
space and the HEAR online search), called WIS, and the other with the Hierarchical
Indexing Structure and the HEAR disabled, that is, using the FAST indexing scheme
in a linear search, called NIS. Both versions of FAST are compared with UFM in the
10,000 image database. The precision-scope data is recorded in Figure 8.8, which
demonstrates that the retrieval effectiveness of FAST is in general superior to that of
UFM and the application of the Hierarchical Index Structure and the HEAR algo-
rithm does not degrade the performance perceivably; in fact, the performance of NIS
is always about the same as that of WIS.

The Hierarchical Indexing Structure of FAST is generated as a tree with the depth
of 4 and the average branching factor as 5. The tree is almost balanced, which verifies
that the clustering in the region feature space based on FAST methodology is almost
spherically separable [13]. This configuration is a trade-off between the recall and
precision. In FAST, each node of the tree is implemented as an object serialized to
a physical file on the disk. Thus the parallel searching on the indexing tree is made
possible (which is an expected improvement for the future further development of
FAST). We set the threshold for the triangle-inequality comparison of the region
distance in all the leaf nodes as an adjustable parameter, which can be set by the
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Fig. 8.8. Average precision/scope comparisons between two versions of FAST (WIS and NIS)

and UFM.

users. Given the normalized region feature distance in [0, 1], the current value of the
threshold in FAST is 0.3.

To study the scalability of FAST, we incrementally sample the original 10,000
image database to generate two smaller databases, one with 3000 images and the
other with 6000 images. These two databases contain sampled images form all the
96 categories. Consequently, the depths of the Hierarchical Indexing Structures for
the two databases are set to be �log5 nl − 3� accordingly based on the same principle
used for the original image database, resulting in 2 and 3, respectively. We randomly
sample 100 images to form a query set from each of the three databases. For the query
images the average number of images compared in each of the three databases, the
average indexing structure search overhead (the processing time to traverse the Hier-
archical Indexing Structure for searching the pursued leaf node), the average query
processing time in FAST, and the average query processing time in linear search are
documented in Table 8.1. It shows that the average number of compared images is
significantly reduced in comparison with the database size. In addition, as indicated
in Table 8.1, although the Hierarchical Indexing Structure search introduces the com-
putation overhead, the average total query processing time is still much less than the
average query processing time in the linear search due to the reduced number of im-
ages to be compared with. The computation overhead for the Hierarchical Indexing
Structure search is small because few additional distance computations are performed
and highly efficient hash table searches are applied. With the increase of the database
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Table 8.1. Retrieval efficiency results; percentage of images compared in the three

databases

Average # Average Average search Average query Average query

Database of compared percentage of overhead in processing time processing time in

size images images examined FAST (second) in FAST (second) linear search (second)

3,000 795 26.5% 0.08 0.55 1.78

6,000 1032 17.2% 0.12 0.79 3.04

10,000 1140 11.4% 0.15 0.98 3.96

size, the percentage of the images examined and the average computation overhead
remain relatively stable. The average query processing time is much less than that in
the linear search in all three testing databases. The average efficiency improvement
on the query processing time to the linear search is 72.7%. This result, combined
with the results observed in Figure 8.8, indicates the promise of FAST for efficiently
handling large image databases without sacrificing retrieval effectiveness.

Since in FAST the size of the class level (clusters in the region feature space)
information is much smaller than that of the index files for images in the database (in
our experiments, the size ratio is 1/95–1/120), it is practical and desirable to deposit
the class-level information in the main memory. With such design the I/O costs for
each query are proportional only to the number of images compared. The reduced
I/O costs in the FAST query processing are observed as shown in Table 8.1 as well.

In the indexing scheme we use the Cauchy function to correlate color descriptions
and to smooth the regions (equivalent to a convolution in computer vision) so that
the color perception uncertainty and segmentation inaccuracy issue are addressed
explicitly. To evaluate the effectiveness of the indexing scheme for improving the
robustness to color variations and segmentation-related uncertainties, we compare
the performances of FAST and UFM for color variations and coarseness of image
segmentation. Color variations can be simulated by changing colors to their adjacent
values for each image and the segmentation-related uncertainties in an image can be
characterized by the entropy. For image i with C segmented regions, its entropy, E(i),
is defined as

E(i) = −
C∑

j=1

P
(
Ri

j

)
log

[
P

(
Ri

j

)]
(8.22)

where P(Ri
j ) is the percentage of image i covered by region Ri

j . The larger the value of
the entropy, the higher the uncertainty level. As we can see, the entropy E(i) increases
with the increase of the number of regions C . Thus, we can adjust the uncertainty
level by changing the value of C. C is controlled by modifying the stop criteria of
the modified k-means algorithm. For a fair comparison between FAST and UFM
at different color variation and uncertainty levels, we perform the same evaluations
for different degrees of color variations and average values of C (4.31, 6.32, 8.64,
11.62, and 12.25) on the 3000 image database introduced above. To evaluate the
robustness in the color variations, we apply color changes to an image (target image)
in the database. The modified image is then used as the query image, and the rank
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Fig. 8.9. Comparison of FAST indexing scheme and UFM method on the robustness in the

color variations. Every image in the 3000 image database is altered and used as query image.

of the retrieved target image is recorded. Repeating the process for all images in the
testing database, the average rank for target images are computed for FAST and UFM.
The result is shown in Figure 8.9. The average rank of the target image of FAST is
lower than that of UFM for each level of color variations (in an acceptable range of
color changes that do not affect semantics perception). To evaluate the robustness in
the segmentation-related uncertainties, the performance in terms of overall average
precision in the top 30 returned images is evaluated for both approaches. The result
is given in Figure 8.10. As we have known, the entropy E(i) (uncertainty) level
increases when the image is segmented into more regions. At all uncertainty levels,
FAST performs better than or as well as the UFM method. Combining these two
experiments of robustness, we have observed that the FAST indexing scheme is more
robust than that of UFM for color variations and segmentation-related uncertainties.
The performance differences between FAST and UFM can be explained as follows.
The UFM method uses the representative feature (one feature vector) of each region
to model the segmentation uncertainty, which is coarse and artificial. The model
generated is not accurate enough to fit the segmented images well. However, FAST
indexing scheme leverages all block features in every region to generate fuzzy models
for each feature component, and thus describes the segmentation-related uncertainty
more precisely and effectively.

In FAST with the user relevance feedback mode, the Gaussian kernel function used
in SVM is K (x, y) = e−‖x−y‖2/2σ 2

with σ = √
2/2. In order to evaluate the capability

of algorithm ITP and ARWU, FAST is run on the 10,000 image database with user
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Fig. 8.10. Comparison of FAST indexing scheme and UFM method on the robustness in image

segmentation uncertainties.

relevance feedback mode for the 1500 query-image set with a varied number of the
top retrieved images. Different users are asked to run FAST initially without relevance
feedback interaction, and then to place their relevance feedback. We plot the retrieval
curves of the precision versus the number of the top retrieved images. Figure 8.11
shows the average precision on three and five rounds of feedbacks, respectively. The
semantics-tailored capability empowered by ITP and ARWU enhances the retrieval
effectiveness in all the scenarios.

Another experiment is performed to verify the promise of FAST ITP itself on the
basis of the 100 query images. We record the average number of images compared
in the first retrieval and after the 3rd and 5th retrieval iterations, respectively, in the
three databases. The results are shown in Figure 8.12.

The reduction of the number of images compared in each iteration due to the tree
pruning in ITP is observed. The efficiency boost between the third iteration and the
initial retrieval is significant because of the relatively large portion of the leaf nodes
pruned in the first several iterations. With the progress of iterations, the ratio of nodes
classified to the irrelevancy side of the SVM decreases quickly such that the efficiency
boost decays accordingly.

To evaluate the effects of ARWU algorithm for further enhancing semantics-
tailored retrieval, we compare the average precision for the same 1500 query image
set on the 10,000 image database, in the scenarios with and without running ARWU.
The experiment is based on the average of the precisions for the top 30 returned images
for each query. The results are shown in Figure 8.13. As is shown, the semantics-
tailored retrieval effectiveness is improved substantially with ARWU.
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Fig. 8.11. Average precision vs. the number of returned images with three and five rounds of

user relevance feedback.

Fig. 8.12. The effect of ITP in iterations for the three databases.
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Fig. 8.13. Accuracy comparison when FAST ITP is run with and without ARWU algorithm

8.6 Conclusions

We have developed a new CBIR methodology on the basis of the goal of delivering fast
and semantics-tailored retrieval, and thus we call it FAST. FAST incorporates a new
indexing scheme, a hierarchical indexing structure with a hierarchical, elimination-
based A* online search algorithm called HEAR. We have shown that HEAR promises
a logarithm search instead of linear search in an average case. FAST also offers user
relevance feedback capability to not only address the individualized retrieval based
on user intended semantics, but also take advantage of the Hierarchical Indexing
Structure and the HEAR algorithm to achieve more effective and efficient semantics-
tailored retrieval through applying the ITP and ARWU algorithms. The promise FAST
demonstrates and the benefits FAST offers are sufficiently supported by the extensive
experimental evaluations.
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Summary. Image data are omnipresent for various applications. A considerable volume of

data is produced, and we need to develop tools to efficiently retrieve relevant information. Image

mining is a new and challenging research field that tries to overcome some limitations reached

by content-based image retrieval. Image mining deals with making associations between images

from large database and presenting a summarized view. After a state of the art in the image

retrieval field, this chapter presents some work and ideas about the need to define new descriptors

to integrate image semantics. Clustering and characterization rules are combined to reduce the

search space and produce a summarized view of an annotated image database. These data mining

techniques are performed separately on visual descriptors and textual information (annotations,

key words, Web pages). A visual ontology is derived from the textual part, and enriched with

representative images associated to each concept of the ontology. Ontology-based navigation

can also be seen as a user-friendly and powerful tool to retrieve relevant information. These

two approaches should make the exploitation and the exploration of a large image database

easier.

9.1 Introduction

These last decades, a considerable volume of multimedia data has been produced.
These data are complex data and more and more applications need to efficiently re-
trieve relevant information. These data can be made of text, image, video, and audio.
A spatiotemporal component can also be found for some data. Multimedia databases
store huge volume of complex data and are used to efficiently retrieve these data,
thanks to indexing capabilities. A data is always carrying information but it is not
always easy to interpret it. For example, 107079 is a data but what is the underly-
ing information? Now, imagine that 107079 is the answer to the following query:
“what is the identification number of the employee named Durand?” In a relational
database, the semantics of the data is contained into the schema. For example, a re-
lation Employee (identification number, name, surname, position, birth date, date of
employment) is designed to store data about the employees of a company. Data stored
into a relational database are coherent when the data acquisition and entry are correctly
done. The same information about the employee named “Durand” can be represented
by “Durand identification number:107079” or by <identification number> 107079

168
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<identification number> <name> Durand <name>. In these cases, the semantic is
introduced by an annotation, which is a data surcharge. Data giving some information
about other data are called metadata. Multimedia data need metadata because these
data do not contain information that is directly exploitable.

For this reason, we point out the major importance of metadata in the context of
multimedia data. An image data does not directly contain information. Preprocessing
is performed to extract a set of metadata that can be classified as follows:

� metadata related to the type of multimedia data,
� descriptive metadata: author’s name, date, etc.
� content metadata (semantic, visual, spatial relationships): visual content deals with

shape, color, and texture, and semantic content is an image interpretation.

The main problem is to process data from pixel to knowledge. At the pixel level,
visual descriptors are extracted from image and query is performed by content. A
lot of research works can be found in the field of computer vision that emphasize on
visual features. In this case, information retrieval consists in similarity search based
on a distance between visual features extracted from image data. This is known as
CBIR (Content-Based Image Retrieval) [1]. The next level of abstraction deals with
objects or regions extracted from image data. The user can select objects so that his
query is more precise. Spatial relationships are taken into account at this level. The
semantic level is dedicated to the extraction and generation of semantic metadata, and
can be processed using ontologies [2]. Last, the knowledge level uses the semantic
level to discover hidden knowledge, relationships between objects and to resume and
characterize a large image database.

Image mining is still a recent research field [3, 4] and is not very developed yet
because extracting relevant knowledge from image data still remains a difficult task.
Classical data mining [5] techniques cannot be directly applied to image data because
of the nonstructured nature of such data. Data mining techniques can be achieved in
a descriptive or predictive goal. Knowledge discovery in image databases is based
on the following phases: (1) collecting images, (2) choosing relevant images for the
data mining task, (3) extracting visual and semantic features, (4) discovering patterns
at image or image group level, and (5) validating and interpreting the discovered
patterns.

In our framework, we want to extract a summarized view of an image database.
Clustering is performed to reduce the search space and characterization rules will
characterize the clusters. We also want to build a visual ontology to enhance the
retrieval process.

This chapter is organized as follows: Section 9.2 describes textual and visual de-
scriptors and image retrieval methods; these systems suffer from a limited expressive
power and we need to define new methods to efficiently retrieve relevant information.
Section 9.3 deals with image mining and with ontology to add semantic information
to multimedia data. Section 9.4 proposes architecture dedicated to improve the ex-
ploration of an image database based on classification and visual ontology. Our first
experiments are also detailed in this section. Section 9.5 concludes and gives some
directions for future work and experimentation.
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9.2 Content-Based Retrieval

This section relates the current state of the art in the image retrieval field. The content-
based image retrieval requires principally two modules: the logical indexation and
the retrieval. The first one extracts the metadata (textual descriptors, visual features)
associated to images and stores the extracted metadata in the database. The second one
assists final users, even those unfamiliar with the database field, to retrieve efficiently
images based on their visual and/or textual descriptions. Figure 9.1 illustrates the
classic image media retrieval and access system architecture.

In this context, the scope of queries addressed to multimedia databases is very
large and may include objective and subjective content. Three levels of abstraction
are distinguished [6]: (1) syntactic level: visual features, spatial localization, and
spatial constraints are used to retrieve images. This level is purely algorithmic. For
instance, a query may be “Give me all the images containing red circles”; (2) semantic
level including only objective content. In this level, objects appearing in images
have to be identified. A query example may be “Give me all the images in which
my children appear”; (3) semantic level with subjective content. This level involves
complex reasoning about objects or scenes using human perception. Such a query may
be “Give me all the images representing the notion of liberty” or “Give me all the
images in which my friends are happy.” This level is also related to scene recognition
as for an example, a child birthday: this scene can be characterized by balloons, young
faces, candles, cakes, etc.

Both the logical indexation and query modules are briefly presented in the
following subsections.

Logical indexation process

Digital image processing

Extracted features +Image media

Retrieval process

Image annotation
Content &
descriptive
metadata

Metadata

Q
u
e
r
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I
n
t
e
r
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Images

Multimedia database management system
(object relational database management system)Images data preprocessing

Fig. 9.1. The classic image media retrieval and access system architecture.
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9.2.1 Logical Indexation Process

In the image retrieval system domain, the retrieval may be performed from tex-
tual descriptions (key words, annotations, etc.) and from visual descriptions (color,
shape, texture, spatial localization, spatial constraints). Consequently, these features
must be modelled in a well-suited representation to satisfy the need of efficient and
relevant retrieval of image media in both heterogeneous (image database with no
specific application domain) and homogeneous (faces, finger printings databases)
voluminous databases. Moreover, the feature computing is not made during each
retrieval process because it is time-consuming task. They are previously repre-
sented in an appropriate form (logical indexation) and then stored in the database
[7].

On the one hand, the textual descriptors may be divided into content metadata
like key words and database modelling. In the systems based on key word search,
one or more key words are associated to an image. The system then selects the
images related to the key word searched. This process is strongly limited because
semantic relationships that exist between key words are not taken into account, like
for example, the fact that a horse is an animal. If the query key word is “horse”
then the horse’s images annotated by the key word “animal” will not be returned.
A significant improvement consists in using an ontology to capture the semantic
relationships between objects. This point will be discussed in Section 9.3.1.

From a database point of view, many propositions have been developed to model
and query image databases. Most systems propose a manual description of image
semantics. We can note the DISIMA model [8] on the basis of an object-oriented
database and the ICDM model [9, 10] on the basis of a relational object database. In
the first prototype, a class hierarchy is defined by the user. An image is composed by
an OID, a set of physical representations (raster or vector), a content (spatial relation-
ships, salient objects). The link between an object that is detected in an image and an
object of the salient objects class is done manually. In the second prototype, the data
model can be divided into four abstraction levels: (1) the image level containing the
global properties of an image; (2) the syntactic level capturing local characteristics;
syntactic objects are created in this level; (3) the content level in which syntactic ob-
jects are grouped; and (4) the semantic level in which semantic hierarchies are defined.
The major interest of this model relies to this semantic level that uses relationships
like synonymy, hyponymy, etc.

Semistructured models are also well-suited to model image databases. MPEG 7
(Multimedia Content Description Interface) [11] is a standard dedicated to multimedia
content description. This description is written using XML and corresponds to the
semistructured approach.

On the second hand, the visual descriptor extracting of an image is a major step
in content-based image retrieval since these visual features model the visual image
content. Moreover, an interesting representation of these descriptors must be compact,
reliable, and accurate. Without a real synergy between digital image processing, signal
processing, and mathematics, such an objective cannot be reached. One or several
representations are associated to each extracted feature.
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The most used descriptor for content-based access today is the color feature.
Well-known color representations are based on color histograms and their extensions
such as weighted color histograms [12], statistical moments [13], the dominant color,
the color sets [14]. Colour is considered in a color space like RGB or HSV [15]. A
well-suited similarity distance is necessary to each feature representation. To estimate
the similarity between two color representations, several distances may be referred
like the L1 metric [12], the quadratic distance [16], the Euclidean distance [16], etc.
Each distance has its advantages and its limits. For example, the quadratic distance
appreciates correctly the color similarity, but it is time-consuming.

While texture is usually represented by a grey-level histogram, statistical mo-
ments, and/or co-occurrence matrix, and more recently by Fourier transform, wavelets,
Gabor modelling [17–20] the shape representations are classified into two categories:
boundary-based (perimeter, curvature, Freeman’s code, Fourier descriptors, etc.) and
region-based (area, compactness, bounding box, moments, etc.) [15, 17, 18, 21, 22].
As far as texture is concerned, its modelling is hard since it is expressed by qualitative
criteria like contrast, directionality, coarseness, etc. As far as shape is concerned, it
represents significant regions or relevant objects in images. Ideally, shape segmen-
tation would be automatic and efficient, but it is either impossible or difficult with
heterogeneous images. Segmentation algorithms generally compute regions sharing
several properties. Nevertheless, each calculated region does not correspond to a rel-
evant entire object. Since obtaining relevant objects, suited representations must be
chosen.

Others usual important features are considered in content-based retrieval systems
like spatial localization (for a semiautomatically or automatically extracted object) and
spatial constraints between two regions called spatial relationships. Spatial constraints
are based on extended Allen’s relationships [23]. All the previous visual feature
representations correspond to psych-visual human criteria. However, some CBIR
systems do not use such criteria; they use only one or several entire image signatures.
By example, while in [19] these features are calculated by means of Fourier transform,
wavelet transform, etc., in [24], the extracted features contain a lot of photometric
information.

To conclude this visual descriptor paragraph, it may be noticed: for each visual
feature, a lot of representations have been proposed in the last decade. The representa-
tion choosing to hold is very sensitive and closely connected to the considered domain
application and the wanted aims. Nevertheless, these properties are often stored into
a numeric vector called a visual descriptor that summarizes the photometric image
information. This vector has a high dimensionnality that raises physical indexing
problems in databases since these extracted features are excellent candidates to the
physical indexation. Despite their importance, these aspects will not be presented in
this chapter. For more details, [23, 25, 26] may be referred.

9.2.2 Retrieval Process

The visual retrieval systems usually include a visual query tool that lets users to
form a query by painting, sketching, and selecting colors, shapes, textures, etc. or
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by selecting an or several interesting image(s) from the database. So, through a user-
friendly and intuitive interface, the final users formulate their queries from both textual
descriptions and visual descriptions (from features previously extracted and stored
in the database during the logical indexation process). These two kinds of metadata
are necessary to improve the retrieval effectiveness since the use of text or visual
information alone is not enough to fully describe the semantic content of images
(each form has limited expressive power on its own). For instance, colors and shapes
are good for capturing visual aspects of a region and they are not very accurate to
represent high-level concept, while textual annotations are good at describing high-
level concept and they are weak to capture visual content. These features tend also to
be incomplete and not effective. Moreover, the content-based image retrieval systems
must be flexible since images may belong to different fields.

Then, the retrieval process by means of a suited distance for each feature com-
putes the similarity between the user’s query and the image database. The best
similar images according to their similarity value are then displayed by decreasing
similarity.

Because some of the features extracted from images may be imprecise, the retrieval
process generally involves probabilistic querying and relevance feedback. It means
that the user may get ranked results, if he is not satisfied with the result images of his
query, he may refine the query and resubmit it. To refine his query, the user chooses
from the returned image set, positive and negative examples. New results are obtained
using this information and this process may be iterated. The reader can refer to [27]
for a complete review of visual information retrieval.

From a database point of view, queries are expressed using extensions of OQL.
New predicates like contains and similar are introduced. These queries can be quali-
fied as exact queries. Fuzzy predicates can be introduced [28] to allow the specification
of imprecise queries.

However, textual and visual feature combinations are sometimes not sufficient,
particularly when semantic querying is predominant, that is, when the image and its
context are necessary (as for instance the retrieval of audiovisual sequences about
unemployment, the retrieval of images in which the sadness feeling is heavy). This
limit is known as the semantic gap between the visual appearance of an image and the
idea the user has in his mind of what images he wants to retrieve, including semantics.
So, the content-based retrieval suffers from a lack of expressive power because they
do not integrate enough semantics. This problem prevents end user from making good
explorations and exploitations of the image database. This is the reason why many
research works are recently performed on image semantics, which is the scope of the
following section.

9.3 Ontology and Data Mining Against Semantics
Lack in Image Retrieval

Users can automatically assign semantics to an image, using the visual content and
their own knowledge. Image retrieval systems suffer from a lack of expressive power
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because they do not integrate enough semantics. Colour, texture, shape, etc., properties
as well as key words are not sufficient to capture all the concepts a user wants to ex-
press. Images that are similar from a visual content point of view may be semantically
very different. This is the reason why many research works are performed on image
semantics. Many approaches intend to propagate annotations starting from partially
annotated image databases. Different point of view can be considered: key words
annotation propagation, semiautomatic annotation, use of ontology, knowledge dis-
covery.

As far as we are concerned, we are focusing on the two last points. We think that
without a real synergy between ontology and data mining, the gap reducing between
low-level textual visual descriptors and high-level concepts can not be reached. It is
well-known that ontologies help the process of information retrieval. But, the combi-
nation of data mining techniques with ontologies to mine, interpret, and (re)organize
knowledge is less common. For us, ontology may be seen as a priori knowledge and
used to improve the data mining process, and conversely data mining process may be
useful for creating ontology. Moreover, these techniques should also improve both
navigation and image retrieval. More precisely, our goal is to build a visual ontology
dedicated to a specific application and to use it for large image database exploration.
Indeed, these techniques should not only allow an efficient access to large image
databases by providing a relevant synthetic view, but also play a filter role by re-
ducing the search space that is essential in media retrieval. The contribution of each
technique (ontology and data mining) to more ingenious image retrieval is developed
in the following sections.

9.3.1 Knowledge Discovery in Large Image Databases

Data mining techniques are part of knowledge discovery methods whose aim is to
discover knowledge in large databases without predetermined information about the
application field that is well-known as KDD [29]. Data mining methods try to discover
knowledge from an exploratory or a decisional point of view.

Today, data mining techniques have been extensively used for traditional data.
However, in the context of multimedia data, the databases contain both numeric
features as in lots of current databases, and voluminous quantities of non standard
data. Image mining (more generally multimedia mining) does not consist to apply
alphanumerical mining techniques to image. Classical data mining methods may not
be directly applied to image because of their nature. Indeed, image data may be
considered as complex data owing their high dimensionality [25]. Some approaches
for extracting knowledge from multimedia data have been proposed. However, we
think that image (more generally multimedia) mining seems to be a promising issue
to overcome the semantics problem in visual retrieval system. This research field is
still in its infancy, but image or multimedia generates new challenges by knowledge
learning and discovering from large quantities of these nonstructured data. In the
image context, among data mining techniques (classification obtained by decision
trees or neural networks, clustering, associated rules), the more used methods are
clustering, association rules [30], and neural networks.
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In recent years, some approaches for extracting knowledge from multimedia data
have been proposed. The SKICAT system [31] deals with knowledge discovery in as-
tronomical images and integrates techniques for image processing and classification.
Decision trees are used to classify objects obtained by image segmentation.

In [32], authors have proposed methods for mining content-based associations
with recurrent items and with spatial relationships from large visual data repositories.
A progressive resolution refinement approach has been proposed in which frequent
item sets at rough resolutions levels are mined, and progressively, finer resolutions
are mined only on candidate frequent item sets derived from mining through rough
resolution levels. The proposed algorithm is an extension of the famous A Priori
algorithm that takes account of the number of object occurrences in the images.

In [33], an algorithm about discovering association rules in images databases
based on image content has been proposed. This algorithm relies on four majors steps:
feature extraction, object identification, auxiliary image creation, and object mining.
The main advantage of this approach is that it does not use any domain knowledge and
does not produce meaningless rules or false rules. However, it suffers from several
drawbacks, the most important is the relative slowness of feature extraction step and
it does not work well with complex images.

In [34], the author proposes an architecture that integrates knowledge extraction
from image databases. Association rules are extracted to characterize images, and
they are used to classify new images during insertion.

In [35], a recent experiment has been done to show the dependencies between
textual and visual indexation. This experiment is performed on different corpus con-
taining photographs manually indexed by key words. Then, the authors compare
text-only classification, visual-only classification, and the fusion of textual and vi-
sual classification. They show that the fusion is significantly improving text-only
classification.

The following section presents how the ontology concept may be seen as a priori
knowledge and used to improve the data mining process.

9.3.2 Ontologies and Metadata

Semantics can be expressed using weak semantics like taxonomies or rich semantics
like ontologies [17, 36]. Semantic information may also appear as semantic annota-
tions or metadata. Several formats have been designed to meet this goal, among which
the Resource Description Framework [37] from the W3C. RDF aims at describing
resources and establishes relationships among them. RDF can be enriched with an
RDFS Schema, which expresses class hierarchies and typing constraints, for example,
to specify that a given relation type can connect only specific classes. A taxonomy is
a hierarchically organised controlled vocabulary. The world has a lot of taxonomies,
because human beings naturally classify things. Taxonomies are semantically weak. A
thesaurus is a “controlled vocabulary arranged in a known order and structured so that
equivalence, homographic, hierarchical, and associative relationships among terms
are displayed clearly and identified by standardized relationship indicators” [38]. The
purpose of a thesaurus is to facilitate documents retrieval. Wordnet [39] is a thesaurus
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that organizes English nouns, verbs, adverbs, and adjectives into a set of synonyms
and defines relationships between synonyms. According to [40], “an ontology is an
explicit specification of a conceptualization.” Ontologies consist of a hierarchical
description of important concepts of a domain and a description of each concept’s
properties. They can be defined more or less formally from natural language to descrip-
tion logics [41]. OWL (Web Ontology Language) [42] belongs to this last category.
OWL is built upon RDF and RDFS and extends them to express class properties.

Many tools and methodologies exist for the construction of ontologies [43–46].
Their differences are the expressiveness of the knowledge model, the existence of
an inference and query engine, the type of storage, the formalism generated and its
compatibility with other formalisms, the degree of automation, consistency checking
and so on. But building an ontology from scratch is a tedious and time-consuming
task. In order to reduce the effort to build ontologies, several approaches for the
partial automation of the knowledge acquisition process have been proposed. They
use natural language analysis and machine learning techniques [47–49].

Data mining techniques contribution to ontology construction can be seen from
two different points of view according to the existence of prior knowledge. In the first
case, the ontology construction from text will be done according to semantic matching
with an existing ontology or thesaurus. In the other case, the ontology is built from
scratch and the quality of the resulting ontology is very difficult to evaluate. Several
similarity measures can be used in these two cases. Clustering is then performed using
a well-suited distance.

Medianet [50] is an example of a multimedia knowledge database built with the
help of Wordnet and including semantic and perceptual relationships. Several repre-
sentations can be associated with a concept (text, image, video, audio); concepts are
linked using semantic relationships (e.g., specialization) and perceptual relationships
(e.g., similar shape). The construction is semiautomatic; the user has to specify which
interpretation of an annotation given by Wordnet is correct. The knowledge base is
built starting from a set of images partially annotated, visual feature extraction tools,
and Wordnet.

9.4 Toward Semantic Exploration of Image Databases

To propose a better image database exploration, we want to exploit the complemen-
tarity of visual and textual image characterizations. For us, this objective may not be
achieved without a strong synergy between image mining and visual ontology.

While Section 9.4.1 is dedicated to a new architecture to support more intelligent
image retrieval systems, Section 9.4.2 presents a few first experimentations based on
different data types.

9.4.1 The Proposed Architecture

Our architecture presented in Figure 9.2 is based on the two well-known processes:
extraction process and retrieval process. In the first process, a summarized view
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Fig. 9.2. The proposed architecture to more powerful visual retrieval systems.

of the image database is created. After extracting and storing visual and textual
features of images, the system summarizes the image database by means of data
mining techniques. As we try to extract a set of clusters and rules from visual and
textual descriptors, our approach is situated in an exploratory context (descriptive
data mining). Indeed, we try to extract a set of clusters and rules from visual and
textual descriptors. These descriptors can be seen as metadata associated to our image
database. This process called “multimedia mining” and detailed in Figure 9.3 is the
heart of our proposition. Extraction and retrieval processes are articulated around
this kernel. Multimedia mining is made of several methods such as clustering and
extraction of characteristic rules from clusters.

While clustering [34] is performed to reduce the research space, the characteriza-
tion rules are used to describe each cluster and to classify automatically a new image
in the appropriate clusters. This unsupervised learning corresponds to descriptive
data mining. Because of their nature difference (numeric versus symbolic), textual
descriptions (key words, annotations, etc.) and visual descriptions (color, shape, tex-
ture, spatial constraints) are separately dealt with well-suited techniques. Starting from
feature sets (such as color set, key word set, texture set, color and shape set, etc.),
the system automatically clusters together similar images. The clustering is based on
a well-suited method to application domain. Famous methods are Self-Organising
Maps [51], k-means, BIRCH, CLIQUE [52], etc. Then, to qualify the previous clus-
ters, a more powerful representation than the cluster centroid has been chosen. These
characterization rules may be obtained either from all the points of a cluster (in order
to have the most frequent patterns) or from a data aggregation (as for example, a
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Fig. 9.3. The multimedia mining process.

median histogram is the case of color clusters, which is representative of the cluster
content).

In the image context, these rules are in the form of antecedent ⇒ consequent
with certain confidence and support, where antecedent and consequent correspond
respectively to a visual feature value and a cluster. The accuracy is fundamental to
estimate the quality of the induced rules. Statistical measures are used to estimate the
rule accuracy.

As far as the textual description processing is concerned, it requires a pre-
processing phase to reduce the number of key words and to keep only relevant
key words. This task is a difficult and time-consuming one, and need an expert to
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validate the results obtained. Textual descriptions need to find relevant similarity
measure. Clustering can be performed by conceptual clustering like Cobweb, or by
other techniques such as k-means after transformation of the initial key words into
numerical vectors. The extracted concepts are then hierarchically organized, using a
priori knowledge, hierarchical classification techniques or the expert’s knowledge of
the application domain.

If the textual information is reduced to key words, domain ontology is neces-
sary to produce semantic relationships between concepts. If documents (like Web
pages for example) are associated with images, relationships between concepts can
be automatically extracted, without a priori knowledge.

Indeed, after computing the reduced view of the image database, the system
should be able to automatically classify new images in the appropriate cluster, thanks
to the characterization rules. The image classification in the appropriate clusters is
possible if the metadata extracted previously are globally respected. If not, it raises
a crucial problem requiring additional works: several solutions may be envisaged:
(1) the “noise” cluster generation, (2) taking the new image and its effects on the
clustering and characterization rules account, etc. The image deletion in a database
is not presented in this chapter, but it points out the same problem.

Once the search space reduction and the cluster characterization by means of rules
performed, descriptive metadata are stored in the database. These metadata represent
the characteristics discovered and shared by images appearing in the same cluster.
They play an important role because they allow the user to navigate from the textual
world toward the visual world, and back. Image database navigation is made through
a visual ontology: starting from the extracted concepts, a hierarchy is built, and for
each concept, a set of representative images is associated. Each concept is linked to
a set of visual classes in which a prototype is extracted as a representative image and
associated to the concept.

The architecture presented in Figure 9.3 is well-suited to specific databases like
fingerprints databases, face databases, etc. Indeed, image mining results depend on
both the chosen clustering method and the estimated similarity quality. Without a
real synergy between application field, considered visual features, their modeling
and the estimation of their similarity degree, obtained descriptive metadata are not
relevant to allow a more interesting image database exploration. This architecture
may also be adapted to general databases, and more particularly to the Web. As Web
databases contain images of any domain, visual features are not very representative of
particular concepts. It is the reason why only the concept extraction phase (Figure 9.3)
is made. Visual clusters are deduced from textual clusters since they contain semantics
by nature. Obtained visual clusters are then characterized by using the rules. This
proposed architecture adaptation may be a new way to navigate Web image databases.

First experimentations based on several databases are described in the next section.

9.4.2 First Experimentations

A first experimentation based on texture images and clustering with self-organized
maps was made. The considered database contained 1098 procedural texture images
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Cyt-b5 Chitin-synth-2

Fig. 9.4. The protein Q9UV00 BOTCI and its predicted domains or patterns.

(i.e., generated mathematically). Considered image features are characterized by a
numeric vector extracted using the Gabor filter technique. The similarity between
two feature vectors is computed by using the well-suited weighted mean variance
distance. The well-known k-means and self-organizing maps methods [51] were im-
plemented to obtain interesting image clusters. The obtained results were promising
and encourage us to continue in this way.

Nevertheless, this database is semantically poor and does not allow us to fully
implement the proposed architecture. That is the reason why new experiments based
on more complex annotated image databases are being done. It means both a database
having several visual features of images and a database with more semantics.

The first one concerns the bioinformatics domain. The main objective is to help
biologists find the protein function in cells according to a bioinformatics analysis. A
protein is composed of several predicted ordered domains or patterns. Some of these
domains explain the protein function. The ordered domain sequence is represented by
an image (Figure 9.4). The idea is to determine the minimal domain/pattern sequence
expressing the considered function. So, predicted images are exploited to retrieve a
matching between functional clusters obtained by the Gene Ontology [53] after a bio-
logical analysis and clusters based on predicted domains (obtained by Pfam [54], for
example). In this context, the considered data are complex for a large volume of data
(thousands of proteins), data protein is modeled by a score of domains/patterns, and
lastly each domain/pattern is characterized by several numerical and textual features
(prediction source, the domain/pattern beginning, its length, the color associated to
its molecular function). Since a protein is a domain/pattern sequence, a clustering
method taking account of the data order is required. Moreover, the high-dimensional
data and the different characterized vector size must be taken into consideration. To
achieve this objective, k-means and self-organizing maps are not well-suited to bioin-
formatics data: a relevant similarity distance is not easy to define because the notion of
sequence does not exist, etc. Clustering methods based on grid or on density are more
interesting in the protein context. The CLIQUE method [52] has been studied and
used. The first results we obtained are interesting, but CLIQUE is time-consuming
owing to the data complexity. A data preprocessing is necessary to reduce the protein
complexity. Data analysis is perhaps a way to explore.

This experimentation shows that no clustering method may be advocated. Only
the data nature (complexity, volume, sequence, etc.) leads to a particular clustering
method category (hierarchical clustering, partitioning clustering, fuzzy clustering,
density-based clustering, grid-based clustering). Then, the chosen method must be
adapted to the data vector and vice versa.

The second one concerns the art domain. The objective is to help users retrieve
pertinent images according to visual or textual features. Annotations from paintings
are stored in a database and we extract knowledge from the paintings titles. Images
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are stored separately. The database contains a large volume of data corresponding to
the paintings that belongs to a French museum. Starting from these titles and after
a preprocessing that consists in eliminating irrelevant words such as stop-words, we
build a co-occurrence matrix. We then apply a hierarchical clustering. A thesaurus of
the art domain is also exploited to associate semantic to the obtained clusters. Using a
similarity measure like the Resnik measure [55], concepts extracted from texts can be
matched with the thesaurus. We are still working on this corpus to exploit the results.

A third experimentation of text clustering and computed ontology was also
achieved [56]. This experiment is dedicated to the architecture based on Web
databases. In this case, we start from the text contained into the Web pages and
then, we explore the image part. Starting from Web pages (in French) in the tourism
domain, we have extracted a set of concepts, using unsupervised clustering method.
The World Wide Web provides a vast source of information. This information is often
semistructured, although you may also find both structured and free text. The infor-
mation is also dynamic; it contains hyperlinks and is globally shared over multiple
sites. For our case, we have a semistructured text that is an intermediate point between
unstructured collection of textual documents and fully structured tuples of typed data.
Some forms of structure we can find in this information source are HTML tags. In
our case, we want to exploit the specific elements of our Web pages in order to give
an added value for some words, thanks to the associated specific HTML tags. After
a preprocessing step, we applied different clustering methods to group similar words
and extract concepts. This preprocessing step is very important to obtain correct re-
sults. We use tools like Tree-Tagger in order to obtain the lemmatized form of each
word. This experiment was based on 585 Web pages. We first apply a hierarchical
clustering method on words that have been tagged as title, subtitle, words appearing
in bold or in color, etc. We obtained a fist concept hierarchy that we refine using
principal component analysis on the all text.

Another clustering method [57] was applied to images found on the Web. In
this case, we have selected a set of Web pages related to a specific domain and
extracted words appearing near the images according to a specific distance from
the images (from 5 to 10 words before and after each image). An affinity matrix
between the words is computed according to the following formula: affinity = 1/(1 +
distance(M1, M2), where distance represents the number of words separating the
words M1 and M2 in the Web page. The clustering algorithm defined by Cleuziou &
al is then applied upon this matrix. The last step is related to the association between
the extracted concepts and the images. In this last experiment, we obtain significant
results of associations between words and images. These first results encourage us to
go on exploring this research axis.

9.5 Conclusion and Future Work

After a review of existing techniques related to multimedia information retrieval, we
point out that these methods are not powerful enough to retrieve efficiently relevant
information including semantic concepts.
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We propose an architecture that combines multimedia mining and visual ontology.
Visual and textual features are separately processed. The clustering process and the
characterization rule process are respectively performed on these features and on
each previous calculated cluster. While clustering is used to reduce the search space,
characterization rules are performed to describe each cluster and to classify a new
image in the appropriate database clusters. These techniques improve also the system
retrieval time since the system matches the selected features with only the database
image features of right clusters. Nevertheless, new image inserting and image deleting
raise a crucial problem (consequences on this action on the cluster and characterization
rule organization) requiring additional works.

Moreover, a visual ontology, which is a concept hierarchy, is built according to
the set of annotations. The retrieval process is based on this visual ontology.

Currently, we continue to develop the proposed framework and to look for the
best appropriate algorithms and methods to compute interesting relevant descriptive
metadata and suited visual ontology.
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10. Visual Alphabets: Video Classification
by End Users

Menno Israël, Egon L. van den Broek, Peter van der Putten,
and Marten J. den Uyl

Summary. The work presented here introduces a real-time automatic scene classifier within

content-based video retrieval. In our envisioned approach end users like documentalists, not

image processing experts, build classifiers interactively, by simply indicating positive examples

of a scene. Classification consists of a two-stage procedure. First, small image fragments called

patches are classified. Second, frequency vectors of these patch classifications are fed into a

second classifier for global scene classification (e.g., city, portraits, or countryside). The first

stage classifiers can be seen as a set of highly specialized, learned feature detectors, as an

alternative to letting an image processing expert determine features a priori. The end user or

domain expert thus builds a visual alphabet that can be used to describe the image in features

that are relevant for the task at hand. We present results for experiments on a variety of patch and

image classes. The scene classifier approach has been successfully applied to other domains of

video content analysis, such as content-based video retrieval in television archives, automated

sewer inspection, and porn filtering.

10.1 Introduction

This work has been done as part of the EU Vicar project (IST). The aim of this project
was to develop a real-time automated video indexing, classification, annotation, and
retrieval system. Vicar was developed in close cooperation with leading German,
Austrian, Swedish, and Dutch broadcasting companies. These companies generally
store millions of hours of video material in their archives. To increase sales and reuse
of this material, efficient and effective video search with optimal hit rates is essential.
Outside the archive, large amounts of video material are managed as well, such as
news feeds and raw footage [1, 2].

Generally, only a fraction of the content is annotated manually and these descrip-
tions are typically rather compact. Any system to support video search must be able
to index, classify, and annotate the material extensively so that efficient mining and
search may be conducted using the index rather than the video itself. Furthermore,
these indices, classifications, and annotations must abstract from the pure syntactical
appearance of the video pixels to capture the semantics of what the video is about
(e.g., a shot of Madonna jogging in a park).

185
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Within Vicar a variety of visual events is recognized, including shots, camera
motion, person motion, persons, and faces, specific objects, etc. In this chapter we
will focus on the automated classification of visual scenes. For searching and browsing
video scenes, classifiers that extract the background setting in which events take place
are a key component. Examples of scenes are indoor, outdoor, day, night, countryside,
city, demonstration, and so on. The amount of classes to be learned is generally quite
large—tens to hundreds—and not known beforehand. So, it is generally not feasible
to let an image processing expert build a special purpose classifier for each class.

Using our envisioned approach, an end user like an archive documentalist or a
video editor can build classifiers by simply showing positive examples of a specific
scene category. In addition, an end user may also construct classifiers for small image
fragments to simplify the detection of high-level global scenes, again just by showing
examples (e.g., trees, buildings, and road).

We call these image fragments patches. The patch classifiers actually provide the
input for the classification of the scene as a whole. The patch classifiers can be seen as
automatically trained data preprocessors generating semantically rich features, highly
relevant to the global scenes to be classified, as an alternative to an image processing
expert selecting the right set of abstract features (e.g., wavelets, Fourier transforms).
In addition, the interactive procedure is a way to exploit a priori knowledge, the
documentalist may have about the real world, rather than relying on a purely data-
driven approach. In essence, the end user builds a visual alphabet that can be used to
describe the world in terms that matter to the task at hand.

Note that the scene is classified without relying on explicit object recognition.
This is important because a usable indexing system should run at least an order
of magnitude faster than real time, whereas object recognition is computationally
intensive. More fundamentally, we believe that certain classes of semantically rich
information can be perceived directly from the video stream rather than indirectly
by building on a large number of lower levels of slowly increasing complexity. This
position is inspired by Gibson’s ideas on direct perception [3]. Gibson claims that
even simple animals may be able to pick up niche specific and complex observations
(e.g., prey or predator) directly from the input without going through several indirect
stages of abstract processing.

This chapter is expository and meant to give a nontechnical introduction into
our methodology. A high-level overview of our approach is given in Section 10.2.
Section 10.3 provides more detail on the low-level color and texture features used,
and Section 10.4 specifies the classifying algorithms used. Experimental results for
patch and scene classification are given in Sections 10.4.1 and 10.4.2. Next, we high-
light three applications in which scene classification technology has been embedded
(Section 10.6). We finish with a discussion and conclusion (Sections 10.5 and 10.7).

10.2 Overall Approach

In Vicar a separate module is responsible for detecting the breaks between shots. Then
for each shot a small number of representative key frames is extracted, thus generating
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a storyboard of the video. These frames (or a small section of video around these key
frames) are input to the scene classifier.

10.2.1 Scene Classification Procedure

The scene classifier essentially follows a two-stage procedure: (i) Small image seg-
ments are classified into patch categories (e.g., trees, buildings, and road) and (ii)
these classifications are used to classify the scene of the picture as a whole (e.g.,
interior, street, and forest). The patch classes that are recognized can be seen as an
alphabet of basic visual elements to describe the picture as a whole.

In more detail, first a high-level segmentation of the image takes place. This could
be some intelligent procedure recognizing arbitrarily shaped segments, but for our
purposes we simply divide images up into a regular n by m grid, say 3-by-2 grid
segments for instance. Next, from each segment patches (i.e., groups of adjacent
pixels within an image, described by a specific local pixel distribution, brightness,
and color) are sampled. Again, some intelligent sampling mechanism could be used
to recognize arbitrarily sized patches. However, we divided each grid segment by a
second grid, into regular size image fragments, ignoring any partial patches sampled
from the boundary. These patches are then classified into several patch categories,
using color and texture features (see Section 10.3). See Figure 10.1 for a visualization
of this approach.

For each segment, a frequency vector of patch classifications is calculated. Then,
these patch classification vectors are concatenated to preserve some of the global
location information (e.g., sky above and grass below) and fed into the final scene
classifier. Various classifiers have been used to classify the patches and the entire
picture, including kNN, naive Bayes, and back-propagation neural networks.

10.2.2 Related Work

Literature on scene classification is relatively limited. Early retrieval systems like
QBIC [4, 5], VisualSEEk [6], PicHunter [7], PicToSeek [8], and SIMPLIcity [9] as
well as recent systems such as MARVEL [10], M4ART [11], and the system proposed
by Wu et al. [12], use color, shape, and texture representations for picture search.
Minka and Picard [13], Picard [14], and Picard and Minka [15] extended Photobook
with capabilities for classifying patches into so-called “stuff” categories (e.g., grass,
sky, sand, and stone), using a set of competing classification models (society of models
approach).

In Blobworld, Belongie, Carson, Greenspan, and Malik [16,17] segment pictures
into regions with coherent texture and color of arbitrary shape (‘blobs’) and offer the
user the possibility to search on specific blobs rather than the low-level characteristics
of the full picture. However, these blobs are not classified into stuff nor scene cate-
gories [16,17]. Campbell, Mackeown, Thomas, and Troscianko [18,19] also segment
pictures into arbitrarily shaped regions and then use a neural network to classify the
patches into stuff-like categories like building, road, and vegetation.
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Fig. 10.1. Screenshots visualizing the first phase of the scene classification process. From top

to bottom and from left to right: The images with a 4 × 3 grid over it, extraction of the patches

from a grid cell, classification of the patches, and the resulting “patch image” with its legend.

Some papers are available on classification of the scene of the picture as a whole.
Lipson et al. [20] recognize a limited set of scenes (mountains, mountain lakes,
waterfalls, and fields) by deriving the global scene configuration of a picture and
matching it to a handcrafted model template. For example, the template for a snowy
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mountain states that the bottom range of a picture is dark, the middle range very light,
and the top range has medium luminance. Ratan and Grimson [21] extend this work
by learning the templates automatically. The templates are built using the dominant
color-luminance combinations and their spatial relations in images of a specific scene
category. They present results for fields and mountains only. Both papers report results
only for retrieval tasks, not for classification.

Oliva and Torralba [22] defined global characteristics (or semantic axes) of a scene
(e.g., vertical–horizontal, open–closed, and natural–artificial), for discriminating be-
tween, for example, city scenes and nature scenes. These characteristics are used to
organize and sort pictures rather than classify them. Gorkani and Picard [23] classified
city versus nature scenes. The algorithms used to extract the relevant features were
specific for these scenes (i.e., global texture orientation). In addition, Szummer and
Picard [24] classified indoor and outdoor scenes. They first classified local segments
as indoor or outdoor, and then classified the whole image as such. Both classifiers
performed well, but it is not known whether these approaches generalize to other
scene categories.

10.2.3 Positioning the Visual Alphabet Method

Our method uses the local patch classification as input for the classification of the
scene as a whole. To our knowledge, only Fung and Loe [25, 26] reported a similar
approach. Note that the final scene classifier has only access to patch class labels.
From the point of view of the final classifier, the patch classifiers are feature extractors
that supply semantically rich and relevant input rather than generic syntactic color
and texture information. Moreover, the patch classifiers are trained rather than being
feature extractors a priori selected by an image processing expert.

So, our method differs and improves on the general applicability for a variety
of scene categories, without the need to select different and task-specific feature ex-
traction algorithms, for each classification task. Moreover, we used computationally
cheap algorithms, enabling real-time scene classification. A more fundamental differ-
ence is that we allow end users to add knowledge of the real world to the classification
and retrieval engines, which means that it should be possible to outperform any purely
data-driven approach, even if it is based on optimal classifiers. This is important given
the fact that image processing expertise is scarce and not available to end users, but
knowledge of the world is abundant.

10.3 Patch Features

In this section, we discuss the patch features as used for patch classification. They
provide the foundation for the scene classifier. In order of appearance, we discuss
(i) color quantization, using a new distributed histogram technique, and histogram
configurations; (ii) human color categories, color spaces, and the segmentation of the
HSI color space; and (iii) an algorithm used to determine the textural features used.
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10.3.1 Distributed Color Histograms

At the core of many color matching algorithms lies a technique based on histogram
matching. This is no different for the current scene classification system.

Let us, therefore, define a color histogram of size n. Then, each pixel j present in
an image has to be assigned to a bin (or bucket) b. Each pixel is assigned to a bin, as
follows:

The bin bi , with i ∈ {0, n − 1}, for a pixel j with value x j , is determined using:

βi = x j

s
, (10.1)

where x j is the value of pixel j and s is the size of the intervals, with s determined
as follows:

s = max(x) − min(x)

n
, (10.2)

where max(x) and min(x) are respectively the maximum and minimum value x j can
take.

For convenience, Eq. 10.2 is substituted into Eq. 10.1, which yields:

βi = n · x j

max(x) − min(x)
. (10.3)

Now, bi is defined as the integer part of the decimal number βi .
As for each conversion from a originally analog to a digital (discrete) representa-

tion, one has to determine the precision of the discretization and with that the position
of the boundaries between different elements of the discrete representation. To cope
with this problem, we distributed each pixel over three bins, instead of assigning it to
one bin.

Let us consider an image with p pixels that has to be distributed over n bins.
Furthermore, we define min(bi ) and max(bi ) as the borders of bin i (bi ). Then, when
considering an image pixel by pixel, the update of the histogram for each of these
pixels is done as follows:

bi + = 1 (10.4)

bi−1 + = 1 − |x j − min(bi )|
max(bi ) − min(bi )

(10.5)

bi+1 + = 1 − |x j − max(bi )|
max(bi ) − min(bi )

(10.6)

where min(bi ) ≤ x j ≤ max(bi ), with i ∈ {0, n − 1} and j ∈ {0, p − 1}.
Please note that this approach can be applied on all histograms, but its effect

becomes stronger with the decline in the number of bins a histogram consists of.

10.3.2 Histogram Configurations

Several histogram configurations have been presented over the years [27]. For exam-
ple, the PicHunter [7] image retrieval engine uses a HSV (4 × 4 × 4) (i.e., 4 Hues,
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4 Saturations, and 4 Values) quantization method. In [28], a HSV(18 × 3 × 3) bin
quantization scheme is described. The QBIC configuration used 4096 bins [4, 5]:
RGB(16 × 16 × 16). For more detailed discussions concerning color quantization,
we refer to [27, 29–33].

Histogram matching on a large number of bins has a big advantage: Regardless
of the color space used during the quantization process, the histogram matching will
have a high precision. Disadvantages of our approach are its high computational
complexity and poor generalization.

When a coarse color quantization is performed, these disadvantages can be solved.
So, since the system should work real-time and the classifiers have to be able to
generalize over images, a coarse color quantization is needed.

However, to ensure an acceptable precision, it is of decisive importance that human
color perception is respected during quantization. Hence, the combination of color
space and the histogram configuration is crucial for the acceptance of the results by
the user.

10.3.3 Human Color Categories

As mentioned by Forsyth and Ponse [34], “It is surprisingly difficult to predict what
colors a human will see in a complex scene; this is one of the many difficulties that
make it hard to produce really good color reproduction systems.”

From literature [30, 35–41] is known that people use a limited set of color cat-
egories. Color categories can be defined as a fuzzy notion of some set of colors.
People use these categories when thinking of or speaking about colors or when they
recall colors from memory. Research from various fields of science emphasizes the
importance of focal colors in human color perception. The use of this knowledge
may provide the means for bridging the semantic gap that exists in image and video
classification.

No exact definition of the number nor the exact content of the color categories
is present. However, all research mentions a limited number of color categories:
ranging between 11 [29, 30, 35] and 30 [37], where most evidence is found for 11
color categories. We conducted some limited experiments with subjective categories
(categories indicated by humans) but these did not give better results to 16 evenly
distributed categories, so for simplicity we used this categorization. Now that we have
defined a coarse 16 bin color histogram to define color with, we need a color space
on which it can be applied.

10.3.4 Color Spaces

No color quantization can be done without a color representation. Color is mostly
represented as tuples of (typically three) numbers, conform certain specifications (that
we name a color space). One can describe color spaces using two important notions:
perceptual uniformity and device dependency. Perceptually uniform means that two
colors that are equally distant in the color space are perceptually equally distant.
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A color space is device dependent when the actual color displayed depends on the
device used.

The RGB color space is the most used color space for computer graphics. It is
device-dependent and not perceptually uniform. The conversion from a RGB image
to a gray value image simply takes the sum of the R,G, and B values and divides the
result by 3.

The HSI/HSV (Hue, Saturation, and Intensity/Value) color spaces are more closely
related to human color perception than the RGB color space, but are still not perceptual
uniform. In addition, they are device-dependent.

Hue is the color component of the HSI color space. When Saturation is set to 0,
Hue is undefined and the Intensity/Value-axis represents the gray-scale image.

Despite the fact that the HSI and HSV color spaces are not perceptually uniform,
they are found to perform as good of better than perceptual uniform spaces such as
CIE LUV [42]. Therefore, we have chosen to use the HSI color space.

Hereby, we took into account human perceptual limitations. If Saturation was
below 0.2, Intensity was below 0.12, or Intensity was above 0.94, then the Hue value
has not been taken into account. This, since for these Saturation and Intensity values
the Hue is not visible as a color.

Since image and video material is defined in the RGB color space, we needed to
convert this color space to the HSI color space. This was done as follows [43]:

H = arctan

( √
3

2
(G − B)

R − 1
2
(G + B)

)
(10.7)

S =

√√√√
(

R −
√

3

2
(G − B)

)2

+
(

1

2
(G + B)

)2

(10.8)

I = R + G + B

3
. (10.9)

Note that all H, S, and I values were normalized to values between 0 and 1.

10.3.5 Segmentation of the HSI Color Space

Our 16-color categories are defined by an equal division of the Hue axis of the
HSI color space, since the Hue represents color. So far, only color was defined and
luminance is ignored.

Luminance is represented by the Intensity axis of the HSI color space. Again
we have chosen for a coarse quantization: the Intensity-axis is divided into six equal
segments (see Figure 10.2).

The original RGB color coordinates were converted to Hue and Intensity coor-
dinates by Eqs. 10.7 and 10.9, as adopted from Gevers and Smeulders [43]. Next,
for both the Hue and the Intensity histogram, using Eq. 10.3 each pixel is assigned
to a bin. Last, Eqs. 10.4, 10.5, 10.6 are applied on both histograms to update them.
Since both histograms were a coarse quantization, this method (i) is computationally
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Fig. 10.2. Left: The relation between the RGB and the HSI color space, from the perspective of

the RGB color space. Right: The cylinder-shaped representation of the HSI (hue, saturation, and

intensity) color space, as used in this research. The figure is adopted from Van den Broek [30].

cheap (making real-time classification possible) and (ii) facilitates in generalization
by classifiers.

10.3.6 Texture

Next to color, texture can be analyzed. Jain and Karu [44] state, “Texture [eludes] a
formal definition.” Let us define texture as follows: A repetitive arrangement of pixels
values that either is perceived or can be described as such.

For texture analysis, in most cases the intensity of the pixels is used, hereby
ignoring their color [36,45–47]. Several techniques are used to determine the patterns
that may be perceived from the image [27,30,36,46–48]. With most texture analyzes,
textural features are derived from the image, instead of describing arrangements of
the individual pixels. This reduces the computational costs significantly, which is
essential for applications working real time.

Therefore, we used a texture algorithm that extracts three textual features for each
position of a mask that is run over the image. Here, the size of the mask determines the
ratio between local and global texture analysis. The position of the mask is defined
by its central pixel. Note that the mask is a square of n × n pixels, with n being an
odd integer.

For each pixel of the mask, the difference between both its horizontal neighbors
as well as the difference between its vertical neighbors is determined. (p, q) denotes
the elements (i.e., pixels) of the image with (i, j) being the coordinates of the pixels
located in a mask, surrounding an image pixel (p, q). Function f determines the
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normalized value of pixel (i, j) for a chosen color channel (i.e., H, S, or I), using Eqs.
10.7, 10.8, and 10.9.

Using the algorithm below, for each mask M11, M12, and M22 are determined,
defining the symmetric covariance matrix M . Let ev1 and ev2 be the eigenvalues of
M . For more details, see, for example, Jähne [49] on structure tensor. Recent work
on nonlinear structure tensors has been presented by Brox et al. [50].

foreach(p, q) ∈ Image
foreach(i, j) ∈ Mask(p, q)

Sum + = f (i, j)

SqSum + = f (i, j)2

M11 + = ( f (i + 1, j) − f (i − 1, j))2

M12 + = ( f (i, j + 1) − f (i, j − 1))2

M22 + = ( f (i + 1, j) − f (i − 1, j)) · ( f (i, j + 1) − f (i, j − 1))

Given this algorithm, three textural features can be determined:

F1 = SqSum − Sum2 (10.10)

F2 = min{ev1, ev2}
max{ev1, ev2} (10.11)

F3 = max{ev1, ev2} (10.12)

F1 (see Eq. 10.10) can be identified as the variance (σ 2), indicating the global amount
of texture present in the image. The other two features, F2 and F3 (see Eqs. 10.11 and
10.12), indicate the structure of the texture available. If ev1 and ev2 differ significantly,
stretched structures are present (e.g., lines). When ev1 and ev2 have a similar value
(i.e., F2 approximates 1; see Eq. 10.11), texture is isotropic. In the case both ev1 and
ev2 are large (i.e., both F2 and F3 are large; see Eqs. 10.11 and 10.12), clear structure
is present, without a clear direction. In the case ev1 and ev2 are both small (i.e., F2 is
large and F3 is small; see Eqs. 10.11 and 10.12), smooth texture is present. Moreover,
F2 and F3 are rotation-invariant.

Hence, this triplet of textural features provides a good indication for the textural
properties of images, both locally and globally. In addition, it is computationally
cheap and, therefore, very useful for real-time content-based video retrieval.

10.4 Experiments and Results

In the previous section (Section 10.3), the features used were introduced. These
features were used for the first phase of classification: the classification of patches,
resulting in a frequency vector of patch classes for each grid cell.

In the second phase of classification, a classifier is used to classify the whole
image. The input for the classifier is the concatenation of all frequency vectors of
patch classes for each grid cell.

So, two phases exist, each using their own classifier. We have experimented with
two types of classifiers: A K-nearest neighbors classifier (kNN) and a neural network.
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We will now discuss both the patch classification (Section 10.4.1) and the scene
classification (Section 10.4.2).

The advantage of kNN is that it is a lazy method; that is, the models need no
retraining. This is an important advantage given that we envisage an interactively
learning application. However, given that kNN does not abstract a model from the
data, it suffers more from the curse of dimensionality and will need more data to
provide accurate and robust results. The neural network needs training, parameter
optimization, and performance tuning. However, it can provide good results on smaller
data sets providing that the degrees of freedom in the model are properly controlled.
The experiments discussed in the next two subsections all used the Corel image
database as test bed.

10.4.1 Patch Classification

In this section, we will discuss the patch classification. In the next section, the clas-
sification of the image as a whole is discussed.

Each of the patches had to be classified to one of the nine patch categories defined
(i.e., building, crowd, grass, road, sand, skin, sky, tree, and water). First, a kNN
classifier was used for classification. This is because it is a generic classification
method. In addition, it could indicate whether a more complex classification method
would be needed. However, the classification performance was poor. Therefore, we
have chosen to use a neural network for the classification of the grid cells, with nine
output nodes (as much as there were patch classes).

On behalf of the neural network, for each of the nine patch classes both a train and
a test set were randomly defined, with a size ranging from 950 to 2500 patches per
category. The neural network architecture was as follows: 25 input, 30 hidden, and
9 output nodes. The network ran 5000 training cycles with a learning rate of 0.007.

With a patch size of 16 × 16, the patch classifier had an overall precision of
87.5%. The patch class crowd was confused with the patch class building in 5.19%
of the cases. Sand and skin were also confused. Sand was classified as skin in 8.80%
of the cases, and skin was classified as sand in 7.16% of the cases. However, with
a precision of 76.13% the patch class road appeared the hardest to classify. In the
remaining 23.87% of the cases road was confused with one of the other eight patch
classes, with percentages ranging from 1.55 to 5.81. The complete results can be
found in Table 10.1.

Table 10.2 shows the results for a 8 × 8 patch classifier in one of our experiments.
The 16 × 16 patch classifier clearly outperforms the 8 × 8 patch classifier with an
overall precision of 87.5% versus 74.1%. So, the overall precision for the 8 × 8 patch
classifier decreases with 13.4% in comparison with the precision of the 16 × 16
classifier. The decline in precision for each category is as follows: sand 22.16%,
water 21.26%, building 17.81%, skin 17.48%, crowd 17.44%, tree 16.8%, and road
7.16%. Only for the categories grass and sky, the classification was similar for both
patch sizes.

Note that Figure 10.1 presents a screenshot of the system, illustrating both the
division of an image into grids. The classified patches are resembled by little squares
in different colors.



P1: OTE/SPH P2: OTE

SVNY295-Petrushin November 1, 2006 18:4

196 Menno Israël et al.

Table 10.1. Confusion matrix of the patch (size: 16 × 16) classification for the test set. The

x-axis shows the actual category, and the y-axis shows the predicted category.

Building Crowd Grass Road Sand Skin Sky Tree Water Unknown

Building 89.23 3.02 0.09 1.11 1.02 0.60 0.38 3.70 0.85 0.00

Crowd 5.19 87.25 0.19 1.81 0.44 0.50 0.38 2.94 0.06 1.25

Grass 0.00 0.00 94.73 0.73 0.60 0.00 0.00 3.00 0.93 0.00

Road 1.55 5.48 2.84 76.13 1.55 1.74 1.81 5.81 3.10 0.00

Sand 1.84 0.88 2.24 1.44 83.68 8.80 0.24 0.00 0.64 0.24

Skin 0.32 2.53 0.00 0.63 7.16 89.37 0.00 0.00 0.00 0.00

Sky 0.21 0.00 0.00 2.57 0.93 0.00 91.71 0.36 3.86 0.36

Tree 1.12 3.44 2.60 0.32 0.16 0.24 0.56 88.44 0.84 2.28

Water 0.00 0.00 4.00 4.44 0.52 0.00 3.04 0.44 87.26 0.30

So far, we have discussed only patch classification in general. However, it was
applied on each grid cell separately: For each grid cell, each patch was classified to a
patch category. Next, the frequency of occurrence of each patch class, for each grid
cell, was determined. Hence, each grid cell could be represented as a frequency vector
of the nine patch classes. This served as input for the next phase of processing: scene
classification, as is discussed in the next subsection.

10.4.2 Scene Classification

The system had to be able to distinguish between eight categories of scenes, relevant
for the Vicar project: interiors, city/street, forest, agriculture/countryside, desert, sea,
portrait, and crowds. In pilot experiments several grid sizes were tested: a 3 × 2 grid
gave the best results. The input of the classifiers were the normalized and concatenated
grid vectors. The elements of each of these vectors represented the frequency of
occurrence of each of the reference patches, as they were determined in the patch
classification (see Section 10.4.1).

Again, first a kNN classifier was used for classification. Similarly to the patch
classification, the kNN had a low precision. Therefore, we have chosen to use a
neural network for the classification of the complete images, with eight output nodes
(as much as there were scene classes).

Table 10.2. Confusion matrix of the patch (size: 8 × 8) classification for the test set. The

x-axis shows the actual category, and the y-axis shows the predicted category.

Building Crowd Grass Road Sand Skin Sky Tree Water Unknown

Building 71.42 9.00 0.85 2.69 2.43 2.86 0.26 6.53 0.77 3.20

Crowd 10.38 69.81 1.13 1.56 2.13 5.56 0.69 6.44 0.19 2.13

Grass 0.80 0.07 93.87 0.73 0.07 0.73 1.20 1.20 0.87 0.47

Road 2.65 5.81 2.45 68.97 2.97 1.87 5.48 3.10 4.52 2.19

Sand 3.44 3.12 2.88 1.84 61.52 15.20 8.80 0.16 2.80 0.24

Skin 1.16 7.79 0.42 0.11 13.47 71.89 4.42 0.11 0.11 0.53

Sky 0.00 0.00 0.00 0.29 1.36 2.57 91.43 0.07 4.07 0.21

Tree 4.56 11.08 8.20 1.88 0.52 0.76 0.24 71.64 0.56 0.56

Water 0.37 0.52 3.26 9.78 3.85 3.85 11.41 0.52 66.00 0.44
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Table 10.3. Confusion matrix of the scene classification for the test set. The x-axis shows

the actual category, and the y-axis shows the predicted category.

Interior City/street Forest Country Desert Sea Portraits Crowds

Interior 82.0 8.0 2.0 0.0 0.0 0.0 2.0 6.0

City/street 10.0 70.0 4.0 8.0 0.0 0.0 2.0 6.0

Forest 2.0 4.0 80.0 2.0 2.0 8.0 0.0 2.0

Country 0.0 6.0 28.0 54.0 10.0 0.0 0.0 2.0

Desert 8.0 6.0 2.0 10.0 64.0 4.0 4.0 2.0

Sea 4.0 14.0 0.0 2.0 0.0 80.0 0.0 0.0

Portraits 8.0 0.0 0.0 4.0 4.0 2.0 80.0 2.0

Crowds 4.0 14.0 0.0 0.0 2.0 0.0 0.0 80.0

For each of the eight scene classes both a train and a test set were randomly
defined. The train sets consisted of 199, 198, or 197 images. For all scene classes,
the test sets consisted of 50 images. The neural network architecture was as follows:
63 input, 50 hidden, and 8 output nodes. The network ran 2000 training cycles with
a learning rate of 0.01.

The image classifier was able to classify 73.8% of the images correct. Interior
(82% precision) was confused with city/street in 8.0% and with crowds in 6.0% of
the cases. City/street was correctly classified in 70.0% of the cases and confused with
interior (10%), with country (8.0%), and with crowds (6.0%). Forest (80% precision)
was confused with sea (8.0%). Country was very often (28.0%) confused with forest
and was sometimes confused with either city/street (6.0%) or desert (10%), which
resulted in a low precision: 54.0%. In addition, also desert had a low precision of
classification (64%); it was confused with interior (8.0%), city/street (6.0%), and with
country (10%). Sea, portraits, and crowds had a classification precision of 80.0%. Sea
was confused with city/street in 14%, portraits were confused with interior in 8.0%
of the cases, and crowds were confused with city/street in 14.0% of the cases. In
Table 10.3 the complete results for each category separately are presented.

10.5 Discussion and Future Work

Let us discuss the results of patch and scene classification separate, before providing
overall issues. For patch classification, two patch sizes have been applied.

The 16 × 16 patch classifier gave clearly a much higher precision than the 8 × 8
patch classifier. Our explanation is that a 16 × 16 patch can contain more information
of a (visual) category than a 8 × 8 patch. Therefore, some textures cannot be described
in a 8 × 8 patch (e.g., patches of buildings). A category such as grass, on the other
hand, performed well with 8 × 8 patches. This is due to its high frequency of horizontal
lines that fit in a 8 × 8 patch.

Therefore, the final tests were carried out with the 16 × 16 patch size, resulting in
an average result of 87.5% correct. Campbell and Picard [14,15,19] reported similar
results. However, our method has major advantages in terms of a much lower com-
putational complexity. Moreover, the classified patches themselves are intermediate



P1: OTE/SPH P2: OTE

SVNY295-Petrushin November 1, 2006 18:4

198 Menno Israël et al.

image representations and can be used for image classification, image segmentation
as well as for image matching.

A major challenge is the collection of training material for the patch classes to be
recognized. The patches with which the classifiers are trained have to be manually
classified. Consequently, the development of an automatic scene classifying system
requires substantial effort since for all relevant patch classes, sets of reference patches
have to be manually collected. For a given class, the other classes act as counterex-
amples. We are currently looking into several directions to reduce this burden. One
approach would be to generate more counterexamples by combining existing patches.
Another direction is the use of one class classification algorithms that require only
positive examples [51].

The second phase of the system consists of the classification of the image repre-
sentation, using the concatenated frequency patch vectors of the grid cells. An average
performance of 73.8% was achieved. The least performing class is Country (which
includes the categories countryside and agriculture) with 54% correct. What strikes
immediately, when looking at the detailed results in Table 10.2, is that this category
is confused in 28% of the times with the category forest and in 10% of the times with
the category desert.

The latter confusions can be explained by the strong visual resemblance between
the three categories, which is reflected in the corresponding image representations
from these different categories. To solve such confusions, the number of patch cat-
egories could be increased. This would increase the discriminating power of the
representations. Note that if a user searches on the index rather than on the class
label, the search engine may very well be able to search on images that are a mix of
multiple patches and scenes.

To make the system truly interactive, classifiers are needed that offer the flexibility
of kNN (no or very simple training) but the accuracy of more complex techniques.
We have experimented with learning algorithms such as naive Bayes, but the results
have not been promising yet.

Furthermore, one could exploit the interactivity of the system more, for instance
by adding any misclassification identified by the user to the training data. Finally, the
semantic indices not only are useful for search or classification but may very well be
used as input for other mining tasks. An example would be to use index clustering to
support navigation through clusters of similar video material.

10.6 Applications

The scene classifier has been embedded into the VICAR system for content-based
video retrieval. In addition, the same visual alphabet approach has been used for other
video classification applications such as porn filtering, sewage inspection, and skin
infection detection. The initial versions of these classifiers were built within very
short time frames and with sufficient classification accuracy. This provides further
evidence that our approach is a generally applicable method to quickly build robust
domain specific classifiers.
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One of the reasons for its success in these areas is its user-centered approach: the
system can easily learn knowledge of the domain involved, by showing it new patch
types and so creating a new visual alphabet, simply by selecting the relevant regions
or areas in the image. In this section we will describe a number of these applications
in a bit more detail.

10.6.1 Vicar

The scene classifier has been integrated into the Vicar Video Navigator [2]. This
system utilizes text-based search, either through manual annotations or through au-
tomatically generated classifications like the global scene labels. As a result, Vicar
returns the best matching key frames along with information about the associated
video. In addition, a user can refine the search by combining a query by image with
text-based search.

The query by image either can be carried out on local characteristics (appearance)
or may include content-based query by image. In the first case, the index consisting
of the concatenated patch classification vectors is included in the search. In the latter
case, the resulting index of scores on the global scene classifiers is used (content).

In Figures 10.3 and 10.4, an example search is shown from a custom-made Web
application based on the Vicar technology: the first screenshot shows one of the key

Fig. 10.3. A query for video material.
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Fig. 10.4. The result of a query for video material.

frames that has been retrieved from the archive using the (automated annotated) key
word countryside. An extra key word person (also automated annotated) is added in
the search, as well as the content index of the image. In the second screenshot the
results of the combined queries are shown: persons with a similar background scene
as the query image.

10.6.2 Porn Filtering

To test the general applicability of our approach, we built a new classifier to distin-
guish pornographic from nonpornographic pictures. Within half a day a classifier was
constructed with a precision of over 80%. As a follow-up, a project for porn filtering
was started within the EU Safer Internet Action Plan (IAP) program. Within this
project, SCOFI, a real-time classification system was built, which is currently run-
ning on several schools in Greece, England, Germany, and Iceland. The porn image
classifier is combined with a text classifier and integrated with a smart cards enabled
authentication server to enable safe Web surfing (see Figure 10.5). The text classifier
and the proxy server have been developed by Demokritos, Greece, and are part of the
FilterX system [52].

For this application of the system, we first created image representations using
the patch classification network as mentioned in Section 10.4.1. With these image
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Fig. 10.5. Different components of the SCOFI system: authentication server, text filtering

server, and porn image classification server.

representations we trained the second phase classifier, using 8000 positive (porno-
graphic) and 8000 negative (nonpornographic) examples. The results: the system was
able to detect 92% of the pornographic images in a diverse image collection of 2000
positive examples and 2000 negative examples (which includes non pornographic
pictures of people). There were 8% false positives (images that are not pornographic
are identified as pornographic images) and 8% false negatives. Examples of false
positives were close-ups of faces and pictures like deserts and fires. For a description
of the complete results, we refer to Israël [53]. To improve results, within the SCOFI
project a Vicar module was used that detects close-ups of faces.

The integrated SCOFI system that combines text and image classification has a
performance of 0% overblocking (i.e., 100% correct on nonpornographic Web pages)
and 1% underblocking (i.e., 99% correct on pornographic Web pages). As such it is
used as a real-time filter for filtering pornography on the Internet, in several schools
throughout Europe.

10.6.3 Sewer Inspection

Our image classification approach is also applied to support the inspection of sew-
ers in the RESEW project (EU GROWTH program for competitive and sustainable
growth). Many European cities are spending increasing amounts to improve their
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sewage systems, so the inspection of deteriorating structures is becoming more and
more important.

Currently, robots are used for sewer inspection, but these are completely controlled
by operators and the video material that is collected is analyzed manually, which is a
costly, time-consuming, and an error-prone process. For instance, a UK-based waste
water utility company taking part in the project has 7000 recent tapes of video material
available, corresponding to thousands of kilometers of sewers. Real-time monitoring
of the entire system would increase the need of automated analysis even further.

Automated and integrated systems for damage identification and structural assess-
ment that are based on video analysis can be used to increase the speed and accuracy
of the inspection and evaluation process and lower the cost. To prove the feasibility of
the above, the project partners have developed an integrated and automated detection,
classification, structural assessment and rehabilitation method selection system for
sewers based on the processing of Closed Circuit Television (CCTV) inspection tapes.
The research prototype provides the user with an easy, fast, and accurate method of
sewer assessment. It consists of an intuitive interface to the sewage network with typ-
ical Geographic Information System functionality, a digital archive of indexed CCTV
inspection tapes and a classification module to analyze video material for defects.

The RESEW classification method builds on the approach presented in this chap-
ter. The primary goal of the classifier is to detect longitudinal cracks. First the central
“tunnel eye” is detected and a spherical rather than rectangular grid is placed around it
(see Figure 10.6; separate specialized modules extract the sewer joints and any CCTV
text).

Neural networks are used to classify the extracted patches into crack and noncrack
classes. For this local patch classification, we achieved an accuracy of 86.9%, with
balanced train, validation, and test sets of 40,000, 18,562, and 20,262 instances,
respectively. In the next stage, patch class histograms along the vanishing direction

Fig. 10.6. A spherical grid is placed on video footage of a sewer.
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are classified to detect global longitudinal cracks. As an alternative method, a region
growing approach is used that takes patch class probabilities as input. The latter
approach generally produces more favorable results.

The environment is designed to be utilized in several utility contexts (water net-
works, sewer networks) where different engineering models are developed (e.g. struc-
tural reliability models for water pipes, reliability models taking into account seismic
risk, safety models based on digital imagery of sewer interior, rehabilitation models
for the previous). The system may be adapted to fit the needs of CCTV inspection of
boreholes, shafts, gas and oil pipelines, and other construction sectors. Going forward,
the methods for analyzing the video material can also be used to build autonomous
sewer robots that can explore sewage systems more or less independently.

10.7 Conclusion

In the work presented here, a general scene classifier is introduced that does not rely
on computationally expensive object recognition. The features that provide the input
for the final scene classification are generated by a set of patch classifiers that are
learned rather than predefined, and specific for the scenes to be recognized rather than
general.

Although the results on different scene categories can still be improved, the current
system can successfully be applied as a generic methodology for creating domain-
specific image classifiers for content-based retrieval and filtering. This is demonstrated
by its success in various applications such as the Vicar Video Navigator video search
engine, the RESEW sewer inspection system, and the SCOFI real-time filter for
pornographic image material on the Internet.
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11. Cognitively Motivated Novelty Detection
in Video Data Streams

James M. Kang, Muhammad Aurangzeb Ahmad, Ankur Teredesai,
and Roger Gaborski

Summary. Automatically detecting novel events in video data streams is an extremely chal-
lenging task. In recent years, machine-based parametric learning systems have been quite
successful in exhaustively capturing novelty in video if the novelty filters are well-defined
in constrained environments. Some important questions however remain: How close are such
systems to human perception? Can results derived from comparing human perception with
machine novelty help tasks such as storing (indexing) and retrieval of novel events in large
video repositories? In this chapter a quantitative experimental evaluation of human-based vs.
machine-based novelty systems is canvassed. A machine-based system for detecting novel
events in video data streams is first described. The issues of designing an indexing-strategy
or “Manga” (comic-book representation is termed as “manga” in Japanese) to effectively de-
termine the “most-representative” novel frames for a video sequence are then discussed. The
evaluation of human-based vs. machine-based novelty is quantified by metrics based on lo-
cation of novel events, number of novel events, etc. Low-level image features were used for
machine-based novelty detection and do not include any semantic processing such as object
detection to keep the computational load to a minimum.

11.1 Introduction

Extracting novelty from video streams is gaining attention because of the ready avail-
ability of large amounts of video being collected and due to insufficient means of
automatically extracting important details from such media. Different ways to sum-
marize video based on novel or important aspects of the video are being explored
by a wide range of industries [9, 17, 24]. Businesses that use video conferencing are
interested in ways to capture important sections of meetings and make an outline
of each meeting available for future reference. Likewise, security/surveillance-based
industries are looking for ways to detect novel events in huge streams of seemingly
unimportant video data.

We explore interesting ways to generate a cluster index of video frames, based on
image features within the frames. Human novelty detection is then compared against a
machine-based novelty detection technique. An example of such comparison is shown
in Figure 11.1. The frames in the figure are the “representative novel frames” of a
cluster found for both human and the machine. Differences and similarities between

209
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Fig. 11.1. Human vs. machine novelty. The top image is the original video frame depicting an
office scene where an employee is typing things into a computer. The image on the lower left
depicts the novelty component found by a human subject in the study using an eye tracker. The
image on the lower right is the novelty as determined automatically by a machine vision system
we developed (termed VENUS). The two novelty components for the same video frame show
that both the human and machine can find similar parts to be novel.

the humans and machines detected novelties are explored with metrics based on region
and location. A framework to cluster the results from the two techniques and show a
comparison metric between the two will be discussed and analyzed.

We term this particular framework for indexing, retrieval and human comparison
of video novelty detection as VENUS (Video Exploitation and Novelty Understand-
ing in Streams). VENUS is a computational learning-based framework for novelty
detection. The framework extracts low-level features from scenes, based on the focus
of attention theory and combines unsupervised learning with habituation theory for
learning these features. VENUS uses a simple habituation technique for “remem-
bering” novelties in order to compensate for recurring events within a scene. The
eye-tracking system used in the experiments detects novelty items based on certain
aspects of human eye tracks such as fixation duration and saccade velocity. However,
it can be extended to incorporate many more features.

In this chapter, we first go over related work in different fields and how this
work compares with other novelty detection systems. The VENUS framework is
then described, followed by a description of how data for human novelty detection
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was obtained. We then describe how novel clusters were obtained and indexed. The
process of selection of representative frame for creating manga is then described.
Lastly we compare the results obtained from novelty detection by humans and the
machine system.

11.2 Related Work

11.2.1 Video Streams

In the past, a number of systems have explored novelty in video streams. Video
surveillance has been a major concern especially since the September 11 attacks. Diehl
and Hampshire [6] examined novelty that occurs within a video and classification of
new objects based on previously labeled objects. They initially classified each image
with a label, and then classification is done on a sequence of images. There are a
number of differences between their system and VENUS. Their system uses a motion
detection camera for novelty detection; hence, they assume that all the video consists
of motion. In VENUS, on the other hand, still frames can also be considered to be
novel. Also it is not apparent what features other than motion were used as a basis
for novelty detection in their approach. One can say that the Diehl approach is a
comparison of new images with a preclassified set of images to find novel events
within a video.

Work by Medioni et al. [19], part of the Video Surveillance and Monitoring
System project, is an example of a system for tracking and detecting events in videos
collected from an unmanned airborne vehicles. Prior to that work, semantic event
detection approach by Haering, et al. [11] successfully tracked and detected events
in wild-life hunt videos. Research by Stauffer et al. [25] proposed detecting events in
real time by learning the general patterns of activity within a scene. This learnt
information is subsequently used for activity classification and event detection in the
videos. Recently, Tentler et al. [28] proposed an event detection framework based on
the use of low-level features. The proposed VENUS framework also uses the low-level
features and then advances the state-of-the-art by combining the focus of attention
theory and habituation-based clustering.

The cognitive apparatus of humans and animals is gauged to detect ńovelór óut
of the ordinary ćhanges in their environment. This observation has been applied in
robotics by Crook et al. [4] and also by Marsland et al. [18]. The former used images
taken by a camera for robot navigation while the later uses such images in conjunction
with sonar for the same purpose. There are certain similarities and affinities between
these two systems and VENUS. Hence the feature set used by VENUS is quite similar
to the feature set used by Crooks et al. [4]. Both the systems use color, intensity, and
orientation as features. According to Marsland et al. [18], the base concept for their
system design is same as VENUS, namely Habituation. Habituation is the idea that
as the frequency of repetition of an event increase, the less novel the event becomes.

Other related work deals with extracting features from a video stream using the
background of the video [2]. The assumption made by these approaches is that the
background will be the same throughout the video. Consequently any changes to
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the background causes a novel event. However, if the background changes, then
everything would be considered to be novel. Where in the VENUS system the actual
content in the video does not affect the novelty found but changes dynamically as
described in Section 11.3.1.

11.2.2 Image Novelty

Even though the topic primarily focuses on video streams, image detection is an
important step in reaching the goal of analyzing video streams and detecting cor-
responding novel events. The following applications discussed here use low-level
features, similar to VENUS, and also illustrate the utility of this approach.

Consider the case of breast cancer diagnosis. Detecting breast cancer efficiently
has always been a problem. According to Tarassenko [27], there are about 26,000
new cases in the United Kingdom each year. On average there needs to be at least
two analysts to review an x-ray image to diagnose breast cancer, implying the great
need to reduce the time required for diagnosis. Tarassenko [27] describes a tool for
analysts to focus on areas with larger mass regions in certain parts of the images,
although the process is not fully automated. This allows an expert to look at areas
that are most important.

Novelty Detection is done using features of shape, texture, boundary (edges),
and contour. These features form the basis of the function that distinguishes between
normality and abnormality. A density function based on the feature vector is used
to detect novelty. If the density function gives a value that is below a predefined
threshold, then the frame is considered to be novel.

11.2.3 Clustering Novelty in Video Streams

Clustering is an effective technique for grouping elements together that are similar
to each other. Clustering was an important component in implementing the VENUS
framework. Instead of showing every novel event, VENUS shows a summary of
novel events that are representative of the whole cluster. Video Manga [30] explains
how a video can be summarized and viewed as a comic book or Manga. Manga is
a Japanese term that refers to comics. A summary of a video is generated through
several steps. Initially, they compressed on all similar regions and then used many
hours of office meetings videos for novelty detection. Normally, when a person is
talking in a meeting, only the person’s mouth and hands are moving. All other body
parts remain still. These images are compressed into a single image. This is done for
all the events. However, the details of such image comparison were not given.

The algorithm we use is based on low-level features like the pixel count of red,
green, and blue, and uses the concept of major colors. If the pixel count of a certain
color is greater than a threshold, the image is then considered to have this major color.
This is done for all three colors. Once this is completed for all the images, each image
will then have a binary representation, where “101” means that they have the Major
Colors of Red and Blue. These images are then grouped together with similar binary
values. The VENUS clustering method is a modified form of this approach.
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11.2.4 Event vs. Novelty Clustering

Novelty clustering should not be confused with Event clustering within a video stream.
Any set of frames that are found to be out of normality in a video stream can be
considered to be Event clusters since the goal of type of detection is to determine
specific periods of time that are different from other time periods. For example, an
event could be students walking to a bus or cars on a highway. These can be an event
that occurred within a video.

Novelty clustering refers not only to anything that is different from normality, but
also to anything that can be deemed unusual. Students walking to a bus or cars driving
from left to right are not considered unusual. A car crash can be considered an event
and to be novel. The VENUS framework is based on Novel events rather than on any
event within a video.

Novelty clustering should also not be confused with temporal event clustering.
Even though the novel frames generated from the VENUS system also include the
frame number that denotes the time the novel frame occurred, it does not have any
effect on the clustering procedure. Similar frames within a video are clustered together.
Within temporal event clustering, the time each image is taken is used to determine the
event it belongs to [3]. With this said, the novel series cannot be represented as a time
series. Lin and Keogh [16] suggest that clustering of time series data is meaningless,
but since novelty series is itself a sampling of the raw video consisting of complete
description of what was found novel, clustering novelty does produce meaningful
results unlike other time series clustering using a sliding window.

11.3 Implementation

11.3.1 Machine-Based Process

11.3.1.1 The VENUS System

Figure 11.2 shows that a block diagram of the VENUS novelty detection model
consists of two major components: a focus of attention component that generates the
low-level features, and the learning component that handles novelty detection. Since
the amount of visual information available within a scene is enormous, we humans
“process” only a subset of the entire scene.

Humans tend to focus on the interesting aspects of the scene, ignoring the unin-
teresting ones. The attention system in our framework is based on a topographically
saliency map that represents an object’s saliency with respect to its surrounding.
VENUS filters out noninteresting events thereby greatly reducing the amount of in-
formation to be analyzed. These interesting events are termed as novel or inconsistent
events. The event detection model described in this chapter consists of the following
two major components:

� A focus of attention component that generates the low-level features.
� The learning component that handles novelty detection. In this section we describe

each of these components in detail.
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Fig. 11.2. VENOM system diagram.

The first phase of the project focused on detecting novel events. Consider the
following example. If a casual observer is positioned on a freeway overpass where
the vehicles below are traveling at about the same speed, after a short period of time
the observer will generally ignore the individual cars (consistent events), but if a
particular vehicle is traveling much slower or faster than the average speed of the
other vehicles it is the subject of the observer’s attention as a novel or inconsistent
event. The VENUS system behaves in a manner similar to a human observer. It will
first learn the normal, consistent events in a visual scene, and then detect novel or
inconsistent events in the scene. A key point in the system is not programmed to detect
fast or slow moving cars, but learns that they are novel in this environment. A common
approach in prior work is to first manually define and then to store descriptions of
inconsistent events in a database or they are defined using a predefined grammar.
Events are then compared to stored events to determine their novelty. The VENUS
system thus has the significant advantage of not requiring events to be detected to
be predefined, but automatically learns what is normal and detects events that differ
from normalcy.1

1 The VENUS project is spearheaded at the Center for Advancing the Study of CyberInfra-
structure (http://www.lac.rit.edu).
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11.3.1.2 The Attention System

The VENUS framework is based on the selective attention theory initially modeled
by Itti and Koch [13], where a saliency map topographically represents the objects
saliency with respect to its surrounding. Attention allows us to focus on the relevant
regions in the scene and thus reduces the amount of information needed for further
processing as verified in Gaborski et al. [8]. The 2D spatial filters used in the system
are modeled after biological vision principles simulating underlying the function-
ing of the retina, lateral geniculate nucleus, and the early visual cortical areas. The
spatial filters are convolved with the input image to obtain the topographical feature
maps. Intensity contrast is extracted using difference of Gaussian filters. The inten-
sity contrast filtering simulates the function of the retinal ganglion cells that possess
the center-surround mechanism. The color information is extracted using the color
opponent filters. Objects that are highly salient in the scene are further tracked for
possible novel events. The video sequences are processed in the still and motion
saliency channels.

Motion information in video sequences is extracted using the 3D spatiotemporal
filters tuned to respond to moving stimuli [31]. Motion detection in our system is
achieved by using a set of difference of offset Gaussian spatiotemporal filters. Hence
The still saliency channel processes every frame individually and generates topo-
graphical saliency maps. Consider an airport scene where someone leaves an object
in a restricted area and walks away. The still saliency channel detects this object as
a salient item. Since this object was not part of the original scene, the introduction
of the object fires a novel event, which is a feature of the still learning and novelty
detection module. The motion saliency channel detects the salient moving objects of
the scene, in this case the motion of the person who brought the object.

11.3.1.3 Feature Extraction

The Feature Extraction takes place once the novel frames are generated from VENUS
or the eye-tracker shown in Figure 11.2. Low-level features are extracted from a set
of images using a color extractor that works on top of the HSV color space. HSV was
chosen over RGB because of its similarity with the way in which humans perceive
color. Feature sets are created based off of a set of query colors. The extractor scans
images or regions of images for each query color and returns a hue score (proximity
from the query color) for each pixel within the scanned region. The mean value of
all the hue scores for a given query color is calculated and saved as that region’s
total score. During execution, multiple color features are used in extraction and their
results saved as feature sets. These feature sets are used for indexing and clustering
the images for later comparison and retrieval.

11.3.1.4 Machine Novelty Detection

Figure 11.3 shows the working of the motion novelty detection module. Novelty
detection and learning in this system is region based, where a region is an 8-by-8 pixel
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Fig. 11.3. Motion learning and novelty detection module.

area on a frame of the video. A direction map encodes motion values for the direction
of motion. The regions of the direction maps that detect motion get excited if there
is a change in the direction of motion in successive frames. These direction maps
are input to the motion learning and event detection module. Within each region, a
Gaussian mixture model represents the values obtained from the directional maps
over a period of time. Each distribution in the mixture is represented by a cluster
resulting in a pool of clusters representing the entire distribution. Novelty detection
is thus reduced to identifying novel clusters in every region.

The following example illustrates how VENUS novelty detects novelty in video
streams. Consider a video sequence in which people are walking from right to left at
a speed of 5 mph. When a person passes over a region (within a group of contiguous
frames), the left directional motion map gets invoked. The excited regions of the
map provide motion values that correspond to the speed of the person walking. A
single cluster representing a Gaussian distribution is formed from these values in the
cluster analysis step in Figure 11.3. This cluster is compared with existing clusters
in the pool of cluster. If this cluster is similar (in its distribution) to any cluster in
the pool, it is merged with the cluster in the pool. Otherwise, if the cluster cannot be
merged with any existing cluster, a new cluster is inserted into the pool. The similarity
measure between two clusters is a function of their means and standard deviations.
If a similar cluster is already found in the pool, then this implies that a similar event
had occurred in the past. Referring back to the example, when multiple people walk
at 5 mph over a region, clusters representing their speeds are merged. This indicates
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that people walking is not a novel event anymore. Now, when a person runs at 15 mph
from right to left, a new cluster for 15 mph is formed. This represents occurrence of
a novel event. Similarly the above phenomenon will be observed if a person walks
from left to right, thereby firing an event in the right directional map. This algorithm
is incremental in nature in that the clusters for a region are updated as events occur
in the scene. The algorithm does not limit the number of clusters per region since the
number of novel event cannot be predicted ahead of time.

New clusters added to the pool are assigned an initial habituation value and an
initial decay rate that determine its temporal characteristics. The decay rate symbolizes
the forgetting term described by Kohonen [14]. The slower the decay rate the longer
is the retention period for the event. The habituation function for a cluster is given
by H (t) = 1 − [1/(1 + e−α)], where H (t) is the habituation value after t frames the
creation of the cluster and a is the current decay rate of the cluster. When clusters
are merged we update the decay rate for the older cluster. This indicates that the
learnt event was reinforced resulting in increased retention. A cluster with habituation
value below the cutoff threshold is considered completely decayed and is discarded
from the pool of clusters. Effectively, the system has forgotten the event that the
discarded cluster represented. Hence the forgotten event becomes novel once again.
This models the concept of forgetting in habituation theory. The initial decay rate is
set to zero which can go up to 1. Value of 0 indicates no decay (longer retention)
while one indicates maximum decay (shorter retention). The decay rate for a cluster
is adjusted as follows: at = 1 − [e/ f ] where at is the decay rate t frames after its
creation, f is the number of frames passed since the creation of the cluster and e is
the number of times the cluster is merged with similar clusters. e/ f term indicates
the reinforcement (cluster merging) rate. Higher the reinforcement rate, closer the
new decay rate to 0. Smaller the reinforcement rate, closer the new decay rate will be
to 1.

As per habituation theory, an event is not instantaneously learnt. It takes some
number of occurrences before a system gets completely habituated. The recovery in
degree of habituation prior to the system reaching complete habituation (also known
as stable state) is lesser than the recovery after reaching complete habituation as seen
in Figure 11.3. Novelty is inversely related to the degree of habituation the cluster
has attained. Higher the habituation value, the lower is its features novelty and vice
versa. The novel events gathered from each motion direction map are combined with
still novelty map to form a final novelty map.

11.3.2 Human-Based System

11.3.2.1 Capturing the Eye Track

The Eye tracker is a system that captures eye tracks of how humans observe their
environment. The Eye tracker is thus representative human system that is compared
to the machine system shown in Figure 11.2. Human eye tracks are recorded while
the subject watches the video to be processed. The experimental setup for the Eye
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Table 11.1. Eye track example format. This is an example of the type of
data that is extracted from the eye track images.

HR MN Sec Total Secs VPOS HPOS

14 39 35.617 52775.617 −6.270 −1.645

14 39 35.633 52775.633 −6.245 −1.615

14 39 35.650 52775.650 −6.195 −1.545

14 39 35.667 52775.667 −6.205 −1.545

14 39 35.683 52775.683 −6.250 −1.525

14 39 35.700 52775.700 −6.295 −1.515

14 39 35.717 52775.717 −6.325 −1.500

14 39 35.733 52775.733 −6.385 −1.510

Tracker is as follows:

� The Eye Tracker is first calibrated to align the laser to the person’s eye.
� It takes from 5 to 10 min of test video to confirm the calibration of the system.
� The actual test video is shown to the user.
� The system then reads the eye movement information as fixations within the video.

The eye track data are then filtered and modified for calibration and readable repre-
sentation. This results in an easily parsable format for the attention finder algorithm.
The format of this data file (Table 11.1) may vary depending on implementation;
however, VENUS requires at least X and Y coordinates across a time series.

11.3.2.2 Extract Scan-Path

The data file is read in and the linear scan-path that the users’ eye followed during
his or her session is cleaned and saved. The path structure is later analyzed to group
fixations together into “Attention Areas.”

11.3.2.3 Segment Eye-Tracking Data

Due to the temporal nature of eye track data and the fact that there will almost always
be at least one fixation per frame of the video, the data are segmented by a user specified
amount. What this does is group together multiple fixations for a certain time period
that is later analyzed for groups of fixations that may or may not correspond with
Attention Areas (Figure 11.4).

11.3.2.4 Cluster Fixations

The clustering technique used in VENUS is simple, though effective. It can be replaced
by a more robust method. For each segment, VENUS determines the centroids of
groups of nearby fixations. VENUS uses a simple threshold measure to determine if
fixations are “nearby” and thus belong to a particular cluster.

Centroids (Figure 11.5) are created to determine the most likely center point
of groups of fixations that will later be used to create the mask that will highlight
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Frame 1 Frame 2 Frame n Segment 1

++

Fig. 11.4. The circle represents single fixation. Each frame has at least one fixation made by the
subject. Based on the number of frames that is predefined beforehand, the frames are combined
and clustered as Segment 1.

the Attention Areas and ultimately produce the novel image analogous to the Venus
output.

11.3.2.5 Novelty Images and Novelty Video

For each centroid in a segment, the Attention Area is determined and a binary mask
is created. This binary mask is applied to the corresponding frame from the video and
is saved. The effect of combining the binary mask with a frame is to “black out” all
areas that are not found as being novel. Novelty frames are then stitched together to
create an AVI video of the sequence of novelty frames (Figure 11.6). (This last step
is optional but is a good visualization of the progression of detected novelty.)

The novelty images constitute the desired output (Figure 11.5) of this process.
The black areas correspond to the mask while the visible regions are the Attention
Areas for each of the segments processed. VENUS uses a simple rule (size of area
corresponds directly to the number of fixations used to determine the centroid) for
determining the actual Attention Area; the rule can be changed should the need arise
to use a more sophisticated measure in the future. Presently VENUS uses the first
frame of the segment being processed to apply the mask to. It is, however, not known
if this is the best way to representation purposes. However, this can easily be modified
to use any frame number desired.

11.3.2.6 Experiment Setup and Usability Testing

The eye tracks were captured using the ASL head mounted ES501 system. A mag-
netic head tracker was not used in the experiments. Subjects were first calibrated and

Fig. 11.5. The lighter circle represents a centroid. In a cluster made by the frames in
Figure 11.4, a centroid is founded where this is the main fixation made for this set of frames.
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Fig. 11.6. Fixation Example Output. The visible part is the region of attention that is determined
by centroids in a manner similar to Figure 11.3. The black areas are the mask that is very similar
to how VENUS shown its novel frames.

then were instructed to watch a series of videos and to keep their heads relatively still.
Subjects were shown four videos that were mainly from security or office cameras.
These videos were chosen for their relatively small amount of motion and consistent
viewing angle. After the subject finished watching all four videos, their data were
saved and converted to ASCII format for later processing. The subjects who volun-
teered for our study came from a wide range of ethnic groups which ensured that the
results were not skewed because of the person’s background.

11.3.3 Indexing and Clustering of Novelty

Video data usually contain a large amount of novel events, although the frequency of
novel events varies. For example, surveillance video of a basement warehouse will
most likely contain less novel events than say an action movie. When many novel
frames are extracted from a video, it is helpful to have an index of novelty frames
with which to browse the novelty set. For this reason, VENUS creates this index,
using an algorithm described by Mukherjea [20] shown in the system diagram in
Figure 11.2.

11.3.3.1 Total Clustering

VENUS creates clusters of similar novelty images based on the feature set. In the
current design, only low-level colors are used to generate these clusters. Table 11.2
shows an example of a set of features taken from a video. Here a tuple represents a
score for each color in the novel frame. A threshold is created by taking the averages
of each color’s score. The algorithm (Figure 11.7) is based on the concept that major
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Table 11.2. Example of Features. This is an example
of a feature set take from novel frames from either
VENUS or the Eye-tracker.

Red Green Blue

85 66 100

25 63 44

10 12 90

85 30 98

colors and pixel counts can be used to determine the most prevalent color of the image.
In VENUS’s implementation color score was substituted by the pixel count. Instead
of using just the average as the threshold, a confidence interval is needed to ensure
that features close to the average are included as part of the cluster. Without this
confidence interval, very similar frames may be in different clusters. The confidence
interval estimation is defined as: x̄ ± Z ∗ (S/

√
n), where x̄ is the threshold, Z is the

interval coefficient, S is the standard deviation of a feature within the population, and
n is the size of the population. A confidence interval of 95% (z = 1.96 for normal
distribution) was expected for the current implementation. The standard deviation of

each feature set is expressed by sN =
√

1
N

∑N
i=1(xi − x̄)2, where sN is the standard

deviation of N , N is the size of the population, xi is each feature value, and x̄ is the
average of the feature population. For each color in Table 11.2, a 1 or a 0 is assigned
if that color meets the threshold ± confidence interval. Hence each frame will then
be described by a binary number. Similar combinations are then clustered together.
The algorithm for this process is shown in the following figure.

1 For each image
2 Calculate the sum of each color
3 end for
4 Find the average of each color and
5 store as threshold
6 For each image
7 For each color
8 If color is greater than threshold
9 Set “1” to color
10 Else
11 Set “0” to color
12 end for
13 end for
14 Group Images based on Binary Values

Fig. 11.7. Total clustering algorithm. The word total emphasizes that the algorithm does
not pay attention to time or the frame number. It clusters the whole set of frames for its
similarity.
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11.3.3.2 Sequence Clustering

An interesting method of creating clusters is to identify the start and end points of
each of the novelty that occurs within a video, instead of comparing all the novel
frames within a video to find similar frames. The sequence of the novel frames that
are similar is clustered. Figure 11.7 shows the sequence clustering algorithm. For
example, suppose that there were five novel frames in a video, each occurring right
after the other. If the distance between frames 1 and 2 is under the predefined threshold,
then they are put within the same cluster. On the other hand, if the distance between
frames 3 and 2 is greater than the threshold, then a new cluster is generated. This will
create sections within the video stream of when a new novel event occurs. There are
numerous forms of distance metrics that can be used such as Euclidean, Mahalanobis,
Minkowski, Block Row, and Chebychev. Euclidean distance was used for clustering
in the present case for simplicity. Each image can then be represented as a feature
vector consisting of low-level features. Thresholds are created on the basis of the
average or median of all the distances.

The total distances are not in a form of a matrix since the distance was based on the
previous and following frame. Once a cluster has been created, a representative image
of the cluster needs to be found to facilitate presentation in a comic book format.

Although the above algorithm describes the process of clustering together visually
similar images, it does not prescribe a particularly good way of representing each
cluster. To solve this problem VENUS uses pixel scores to get mean values for each
color. Next, a distance is calculated for the features of each image with respect to the
mean. The image whose features have the smallest distance with respect to the mean
is used as the representative image. Representative images are then arranged on the

1 For each image
2 Calculate Euclidean distance between
3 image and the next image
4 end for
5 Find the average of all distances and store
6 as threshold
7 Find Confidence Interval (x̄)
8 For each image and distance
9 If image and next image distance is less than
10 threshold ± x̄
11 Cluster images together
12 Else
13 Create new cluster
14 end for

Fig. 11.8. Sequence clustering algorithm. Sequence means that time is a factor within this
algorithm. A frame can be clustered only if it is similar enough to the previous frame based on
a threshold.
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1 For each cluster
2 Calculate total amount of color pixels
3 Add into the cluster average of pixels
4 For each image
5 Calculate distance from image to average
6 end for
7 Find shortest distance between image and average
8 Assign image as representative cluster
9 end for

Fig. 11.9. Representative image algorithm. Finds the centroid of the novel frame clusters for
both the VENUS and Eye-tracker systems.

basis of the time when the respective frame occurs in the video. The images are then
laid out in a comic book-like format (Figure 11.10).

11.3.4 Distance Metrics

11.3.4.1 Location Similarity

The first metric used by VENUS is location similarity. Novel frames usually contain
only a small amount of novel area. The task here is to extract the actual location on
the image where a certain novelty is present and to compare that with the location of
novelty from a corresponding frame in order to determine whether or not the novelty
detected by both systems captures the same location.

Novel location regions are extracted from the images using a recursive dissec-
tion technique. The algorithm recursively breaks up the image into subregions until a
specified depth using quad-trees. Not only are novel regions quickly located, but a hi-
erarchy of such regions is also created. This hierarchy can then be used later for further
feature comparison, as in the case of the feature similarity metric. Figure 11.11 shows
the comparison of similar regions between two novel images and the corresponding
scores.

Fig. 11.10. Example of VENUS Manga. This is the represented frames generated by the
algorithm in Figure 11.8. The frames are organized by time or frame number that represents a
comic book or a summary of novel events within a video.
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11.3.4.2 Feature Similarity

The second metric is feature similarity. Feature similarity is an abstract concept and
can therefore be used for comparison of any type of comparable feature. In the case of
VENUS, pixel color is the comparable feature. Regions of an image are compared to
regions of other images on the basis of the mean hue scores generated by the feature
extractor. The regions to be compared are identified via the location similarity metric
detailed above. The feature similarity metric is able to identify regions across images
that are similar to each other by using the hierarchy of similar regions. The user can
specify how detailed of a comparison to perform, which facilitates fast comparison
across very different images as well as detailed comparison between images that are
very similar. Figure 11.11 shows scores for the feature similarity metric.

Figure 11.11 shows a visualization of the metrics VENUS uses. The second image
is compared to the first, while the third image shows the novel regions as well as the
intersection of those regions. Scores are calculated based off of the two metrics and
printed on the middle image. As one can see, although the first image has a 0% location
similarity to the second, their features are still 98% similar. Likewise, the features of
the second comparison are 99% similar, with a location similarity of 15%.

Fig. 11.11. Location and feature similarity metrics. The top image shows that the location
feature is large since the two novel images are not within the same region. The image below
shows that the distance feature is small since the two novel images overlap eachother.
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These image metrics enable VENUS to compare entire sets of novel images across
different novelty detection systems shown in Figure 11.2.

11.4 Results

11.4.1 Clustering and Indexing of Novelty

11.4.1.1 Total Clustering Approach

VENUS’ motion maps alone can give good visual results, although these results are
not sufficient for identifying novelty. Figures 11.12 and 11.13 show a comparison
between using motion versus all three measures.

VENUS’ and the Eye-Tracking novel images were clustered using the Total Clus-
tering algorithm discussed in Section 11.2.3. The results from this process were good.
Images with similar features were grouped together into clusters that were later linked
via their representative images. Figure 11.14 shows a graph of clusters obtained for a
set of the Venus data. Since low-level features were used to cluster and index, images
within clusters are visually very similar. New features can easily be incorporated to
improve these results. The human-based novelty frames were also processed in the
same manner and are also separated into visually similar groups.

11.4.1.2 Sequence Clustering Approach

Figure 11.14 also shows two types of distance equations within the graph. The first
measures the distance from an image within a cluster to the representative frame
and can be expressed as D(Ci , I j ), where Ci is the centroid of the cluster and I j

is the image within that cluster. This distance is in terms of the difference in value
of features in the base image and the query image (base image being Venus and

Fig. 11.12. Three measures: motion, still, and color.
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Fig. 11.13. One measure: Motion. VENUS using only the Motion measure. Since the goal
of our project is to compare novelties between two different systems, the most visible novel
areas should be used. This is why we chose to use just motion instead of all three shown in
Figure 11.12.

Fig. 11.14. Clustering example. This is an example of two clusters. The links within the
cluster show the Euclidean distance between the cluster elements and the centroid. The distance
between the two centroids are based on time or frame number.
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Table 11.3. Human vs. machine total clustering. This is a comparison to show that the
number of clusters generated by the Total Clustering algorithm, for both machines and
humans is very similar. The average number of human clusters is based on 11 testers
with each having 10 novel frames.

Total number of Machine Average human
Video novel frames clusters clusters

1 195 7 3
2 181 6 4
3 227 6 3
4 205 5 3

query image being the E.T. novel image). The second measures the distance between
representative images within a video and can be expressed as D(Ci , C j ), where Ci

is the centroid of each cluster. Here, distance is expressed in terms of time, or frame
number, and is used for the layout of the final comic book strip. After clusters are
temporally linked together, each cluster’s representative image is displayed and the
comic book is formed.

The novel frames generated from Venus and the Eye Tracker were clustered
together with this interesting clustering approach. The representing frames were gen-
erated in the same manner as the Total Clustering approach. The clusters are very
similar to the ones shown in Figure 11.14, but each novel frame within a cluster was
found to be within the same sequence. The results from this approach was very dif-
ferent from the results in the Total Clustering approach. The clusters generated by the
previously described algorithm exhibited more intracluster similarities as compared
to the Sequence Clustering approach. Table 11.3 shows the average number of clus-
ters generated for the human-based and the machine-based approach using the Total
Clustering algorithm.

Within the Eye Tracker and the Venus system, there were a total of 4 videos and
10 users for the Eye Tracker that we experimented with. These values are based on
the average of those results. Each of these videos had very similar time duration even
though the contents of these videos came from different domains.

Figure 11.8 shows the same statistics obtained via the Sequence Clustering al-
gorithm. These results show that there is a significant difference between the human
and machine novel approaches. This also shows that we are still far from reaching
human-like novelty detection level. The number of clusters differ greatly against the
total clustering algorithm shown in Table 11.4. This shows that Machine novelty
detection is still significantly different from Human novelty detection.

Table 11.4. Human vs. machine sequence clustering. This is a comparison between
machine and human clusters using the sequence algorithm.

Total number of Machine Average human
Video novel frames clusters clusters

1 195 69 2.8
2 181 57 3.0
3 227 42 4.2
4 205 60 3.4
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11.4.2 Human Novelty Detection

Human novelty detection proved to be much more subjective, which was expected.
Many factors came together to influence a subject’s tests but all subjects’ results were
very similar as far as Attention Areas were concerned. First time novelty within the
video gained high attention and quickly dropped down as new novelty was introduced.
Essentially, humans tend to focus upon novelties “one at a time” and for short periods.
On the other hand, a machine-based approach like Venus is capable of detecting all
novelties simultaneously within a video.

The comic strip based on human novelty detection that was created was very
homogeneous. It was observed that low-level features were not sufficient in creating
and using a distance metric for comparison of novel images. This conclusion is a result
of the manner in which representative images were produced. Using the similarity
average of low-level features and the similarity of shared locations resulted in the
selection of the largest Attention Area found within the subject’s novel image set
as the closest pairing to each of VENUS’ representative images. This shows us that
higher level features need to be considered in order to get more accurate scores
between a subject’s novelty and VENUS’ novelty.

11.4.3 Human vs. Machine

The most apparent difference that was observed between the human novelty and
VENUS’ novelty was in the apparent habituation of incoming novel areas (see
Table 11.5 and Table 11.6). Venus uses a habituation technique where new novel
events are “remembered” for a while and their significance to the current novelty
within the video gracefully degrades over time. An example of where this is useful
would be a busy airport. Initially, dozens of people walking around the airport would
be very novel and Venus will display them as novelty within the scene. Over time,
VENUS becomes used to dozens of people walking around and will not register them
as being novel any longer. The real use of the habituation is in a situation where a
person in the same airport drops a red bag on a chair and walks away. VENUS will
pick this red bag up as being very novel and therefore show it in its results.

It has been observed that humans tend to have this same type of habituation [7].
Humans tend to pick up novelty within the video very quickly and, if it was not a
major event, return their attention to the previous Attention Area just as quickly. This

Table 11.5. Total clustering: The table shows the raw data of every subject’s novelty clusters
for each video we tested against the number of clusters generated from VENUS-based
novelty detection.

Total number of Machine Human clusters
novel frames clusters 1 2 3 4 5 6 7 8 9 10

Video 1 195 7 3 4 3 2 3 3 3 3 3 3
Video 2 181 6 7 4 2 2 3 4 2 3 2 3
Video 3 227 6 2 2 3 4 2 4 3 3 2 3
Video 4 205 5 4 2 3 4 2 2 3 2 3 4
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Table 11.6. Sequence clustering: This table shows the raw data of every subject’s cluster for
each video we tested against the number of clusters generated from VENUS based novelty
detection.

Total number of Machine Human clusters
novel frames clusters 1 2 3 4 5 6 7 8 9 10

Video 1 195 69 2 3 4 1 3 2 1 1 4 4
Video 2 181 57 3 3 3 3 3 1 2 1 2 4
Video 3 227 42 4 4 4 4 3 4 3 4 4 2
Video 4 205 60 3 4 2 4 4 2 2 4 2 3

is an important aspect of the comparison between VENUS and a Human’s novelty
detection mechanisms and will be discussed in the next session.

Human novelty detection using segmented video and low-level feature extraction
does not produce the quantity of novel frames for a comprehensive comparison to
a machine-based approach. This was shown by the homogeneity of the final comic
Human strip as well as the similarity among scores of each human novelty image.
There does not seem to be any way in which to increase the number of novel frames
without either repeating much of the novelty information in each frame or losing the
high-level Attention Areas to many small fixation areas that would not visually show
any usable results.

11.5 Discussion

11.5.1 Issues and Ideas

11.5.1.1 Venus

At present, the VENUS system does not gather semantic information about how
relevant incoming novelty may be. Consequently it is difficult to model VENUS’
habituation algorithm to focus on “important” novelties rather than all novelty, where
important novelties are defined as what is considered novel by a human being. It may
be however possible to tweak the habituation mechanism to be trainable by a human
expert whose job it is to discern between “important” and “unimportant” novelty.
A system such as this would have great impacts on security surveillance systems,
gambling monitors, highway safety, and many other areas. How this type of system
may be implemented is still an open question.

Video indexing has not recieved as much attention in the community as novelty
detection. With regards to video indexing, it is important to note the work of Furht
and Saksobhavivat on video indexing [7], Sun, Majunath, and Divakarn, on using
motion to detect different levels in a video to index [26], and Detyniecki, who uses
color features within key frames of a video for indexing [5]. Figure 11.15 gives an
example of novelty detected by VENUS over the course of a video.

Another issue for Venus is the preprocessing time to generate novel images.
Currently VENUS can take only uncompressed images, which can take up quite a
bit of space. For example, consider the case when a 4-min compressed. AVI was
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Fig. 11.15. Example of novelty detected in a Video with the respective frame numbers

used. When the file was uncompressed, the size of the decompressed file increased
from 50 Mb to about 2 Gb. This .AVI movie had about 8000 frames and it took close
to 30 s for each frame to be processed by Venus. This is a scalability issue and is
an area of future development. By looking over the results from the Human novelty
detection, it can be suggested that within the particular domain we experimented
with (surveillance video) Human novelty detection most closely mirrored VENUS’
motion images. This could be a way to speed up VENUS’ processing time; i.e., by
only processing the color and still maps when needed as opposed to every frame.

11.5.1.2 Eye Tracking

The issues concerning the eye-tracking experiments and setup mainly revolved around
proper calibration of the subject’s gaze. Without the support of a magnetic head tracker,
each subject’s gazes had some error associated with them. The error was reduced for
many subjects by gradual tweaking. However, the error persisted for some subjects
even after tweaking. The nature of the experiments however did not call for extremely
precise measurements and can therefore receive little alarm.

For any real-time training of VENUS to take place by a Human, a noninvasive eye
tracker would be needed. Remote eye trackers such as Tobii 1750 [5] or ASL’s 504
HS model [6] would be ideal for this type of scenario. With these newer, noninvasive
eye tracking systems many real-time applications of this sort would become possible.

11.5.1.3 Novelty Comparison

One of the goals of this chapter was to compare machine-based novelty and Human-
precieved novelty from the eye tracker. It was observed that the number of novel
clusters detected by the machine is far greater than the novelty clusters detected by
a human. This is to be expected since VENUS exhaustively finds novel events in the
video streams and as previously mentioned in Section 11.2.2.

Anything out of the ordinary is considered to be novel by VENUS. In this regard
it can be said to perform better than the human. On the other hands, VENUS does not
really distinguish between “important” or “unimportant” events that may be context
dependent. This situation can be conceptualized as follows: Video novelty is just a
subset of what is considered novel by a human being, e.g., if the video is that of a
conversation between different people, in addition to visual changes in the video as
being considered novel, any sudden change in the topic of discussion would also be
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considered novel by a human. Such novelty is, however, not currently included in the
scope of this project.

11.5.1.4 Future Work

A possible future project may involve using VENUS’s framework to create graphs
of novelty such as those described in Section 11.3.1. Mining these graphs may give a
way to process difficult queries such as “Show me all of the events in videos X, Y and
Z where this type of novelty occurred” or “Search for novel events that tend to lead up
to a certain type of novel event” and others. To mine digital media in such a way, one
needs a traditional structure in which to store these types of events. Future analysis
of novelty, novelty clusters, novelty graphs, and representative images could lead to
this type of data structure, on which more traditional search strategies can be applied.

11.5.2 Summary

A machine novelty detection system called VENUS was described in this chapter.
VENUS successfully employs the theory of habituation for learning novel events over
time in a video data stream. The utility of this approach was demonstrated by a series
of experiments. VENUS does not use semantic information for novelty detection but
rather uses low-level image features. An attempt was made to compare machine-
based novelty detection scheme with the human-based novelty scheme gleaned from
the eye-tracking system. It was, however, observed that the low level features for
human based novelty detection were inadequate for such a comparison.

The data from the machine novelty system VENUS and novelty precieved by
a human as recorded by the Eye Tracker were used to analyze different novelty
detection strategies, compare them, and lay them out in a manga-like format. Important
events in the video were described by the novelty detected in the video. In addition,
indexing schemes for clustering and indexing novel frames was also implemented
and discussed. A framework for comparison between the machine-based and human-
precieved novelty was also implemented and tested. The results of the respectove
tests and experiments were listed and reviewed.
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12. Video Event Mining via Multimodal
Content Analysis and Classification

Min Chen, Shu-Ching Chen, Mei-Ling Shyu, and Chengcui Zhang

Summary. As digital video data become more and more pervasive, the issue of mining in-

formation from video data becomes increasingly important. In this chapter, we present an

effective multimedia data mining framework for event mining with its application in the au-

tomatic extraction of goal events in soccer videos. The extracted goal events can be used for

high-level indexing and selective browsing of soccer videos. The proposed multimedia data

mining framework first analyzes the soccer videos by using multimodal features (visual and

audio features). Then the data prefiltering step is performed on raw video features with the aid

of domain knowledge, and the cleaned data are used as the input data in the data mining process

using the Nearest Neighbor with Generalization (NNG) scheme, a generalized Instance-Based

Learning (IBL) mechanism. The proposed framework fully exploits the rich semantic infor-

mation contained in visual and audio features for soccer video data, and incorporates a data

mining process for effective detection of soccer goal events. This framework has been tested

using soccer videos with different styles as produced by different broadcasters. The results

are promising and can provide a good basis for analyzing the high-level structure of video

content.

12.1 Introduction

With the increasing amount of digital video data, mining information from video
data for efficient searching and content browsing in a time-efficient manner becomes
increasingly important. Motivated by the strong interest of automatic annotation of
the large amount of live or archived sports videos from broadcasters, research toward
the automatic detection and recognition of events in sports video data has attracted a
lot of attention in recent years. Soccer video analysis and events/highlights extraction
are probably the most popular topics in this research area.

The major challenges in soccer event detection lie in the following four aspects.
First, the value of sports video drops significantly after a short period of time [5],
which poses the requirement of real-time (or close to real-time) processing. Second,
unlike some of the other sports, such as baseball, tennis, etc., where the presence of
canonical scenes (e.g., the pitching scene in baseball, the serve scene in tennis, etc.)
could greatly simplify the technical challenges, soccer videos possess a relatively

234
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loose structure. Third, the important video segments (events or highlights) in a sports
video constitute only a minor portion of the whole data set. Consequently, the limited
number of training data points increases the difficulties in detecting these so-called
rare events, especially in the present of noisy data introduced during the production
process. Last, but not least, the video data obtained from various sources might be
inconsistent due to different production styles and postproduction effects. In other
words, although some basic production rules might apply, the overall presentations
vary greatly.

In the literature, many researches have been devoted to address these issues from
the media content analysis [3, 12, 14, 25, 26, 33–35, 37] to the supervised classification
techniques [1, 20, 21, 27, 30, 31]. An overview of the related work will be detailed
in Section 12.2. However, few approaches possess the capabilities of tackling all the
above-mentioned challenges. In response to these issues, in this paper, an effective
multimedia data mining framework is proposed with its application on the soccer
goal event detection, which seamlessly integrates the multimodal content analysis
and the Nearest Neighbor with Generalization (NNG) scheme which is a generalized
Instance-Based Learning (IBL) mechanism. Here, an event is defined in the shot level
as the shot is widely regarded as a self-contained unit with an unbroken sequence of
frames taken from one camera.

In our proposed framework, multiple cues from different modalities including
audio and visual features are fully exploited and used to capture the semantic struc-
ture of soccer goal events. Then the NNG scheme is applied for event detection.
Currently, most existing classification techniques adopted in the event detection area
are called model-based approaches as they compute the global approximation (or
called model) of the target classification function, which is then used to classify the
unseen testing data. In contrast, the IBL mechanism is called lazy method in the sense
that the generalization of the observed (training) data delays until each new query
instance is encountered [24]. Therefore, it can use the query instance for selecting
a local approximation to the target classification function [13] each time when a
query instance is given. The importance of incorporating the query instance lies in
the fact that the current production style is one of the key factors in determining the
pattern of a targeted event. Therefore, by adopting the IBL mechanism, we direct
our focus on the instances themselves rather than on the rules that govern their at-
tribute values. In addition, in response to the requirements of real-time processing
and rare event detection, a data prefiltering step is integrated in the IBL mechanism
to perform on the raw video features with the aid of the specific domain knowledge.
We have evaluated the performance of the proposed framework by using a large
amount of soccer video data with different styles and different broadcasters. The ex-
perimental results demonstrate the effectiveness and the generality of our proposed
framework.

The contributions of the proposed framework are summarized as follows:

� First, an advanced video shot detection method is adopted in this work, which
can not only output the shot boundaries, but also generate some important visual
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features during the process of shot detection. Moreover, since object segmentation
is an embedded subcomponent in video shot detection, the higher level semantic
information, such as the grass areas, which serves as an important indication in soc-
cer goal detection, can be derived from the object segmentation results. Therefore,
just a small amount of work needs to be done in order to extract the visual features
for each shot, which distinguishes our framework from most of the other existing
approaches.

� Second, when choosing the proper data mining technique, we take into considera-
tion the data inconsistency posed by various production types. In other words, with
widely varied production styles and preferences, it is difficult to achieve a global
approximation accurately with regard to the event patterns as targeted by the model-
based approaches. In contrast, the IBL mechanism defers the decision-making pro-
cess until the presence of the new query instance, where the local optimization for
this particular instance is considered.

� Third, the proposed data prefiltering step is critical to apply the IBL mechanism
to this specific application domain when considering the real-time processing re-
quirement, the influence of the noisy data, and the small percentage of the positive
samples (goal shots) compared to the huge amount of negative samples (nongoal
shots) in soccer video data. To our best knowledge, there is hardly any work ad-
dressing this issue.

The chapter is organized as follows. Section 12.2 gives an overview of the related
work. In Section 12.3, the proposed multimedia data mining framework is discussed
in details. Experimental results are presented and analyzed in Section 12.4. Finally,
Section 12.5 concludes our study and presents some future research directions.

12.2 Related Work

Research work has been conducted to study the respective roles of visual [14, 26],
auditory [25, 33], and textual [3] modalities in sports video analysis. Recently,
the approaches using multimodal analysis have drawn increasing attentions [12,
37] as the content of a video is intrinsically multimodal and its meaning is con-
veyed via multiple channels. For instance, in [12], a multimodal framework using
combined audio/visual/text cues was presented, together with a comparative anal-
ysis on the use of different modalities for the same purpose. However, the use
of the textual transcript is not always available although it contains rich seman-
tic information for event identification. In addition, to boost robustness against the
variations in low-level features and to improve the adaptability of event detection
schemes, mid-level representation has also been used in event detection, including
the camera view types (global, medium, or close-up) [32], audio key words [15,
33], etc. Therefore, in our framework, multimodal content analysis is carried out
in the audio and visual channels, where both low-level and mid-level features are
explored.
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Despite numerous efforts in video content analysis, it remains a major challenge
in terms of effectively integrating the multiple physical features to infer the semantic
events due to the well-known semantic gap. In response to this issue, some research
efforts have been directed to extend the basic content analysis methods with the fa-
cilitation of more supervised approaches, such as heuristic method [21], E-R model
[27], and Hidden Markov Model (HMM) [2]. In [21], a set of fixed rules is derived
on the basis of the multimodal cues. However, the derivation process becomes in-
feasible with the increment of the number of multimodal features. In addition, the
fixed thresholds adopted in the rules are not general enough for a large number of
video samples. In [27], Tovinkere and Qian proposed a hierarchical E-R model on
the basis of 3D data of the locations of players and ball, trying to model the semantic
meaning and domain knowledge for soccer games. A set of rules is thereafter gen-
erated to determine the occurrence of the event. However, the generalization of this
work is highly limited as the 3D information is not generally available in the video
data. In [2], a method to detect and recognize soccer highlights using Hidden Markov
Model (HMM) was proposed, in which each model is trained separately for each type
of event. As shown in their preliminary results, this method can detect and recognize
free kick and penalty event. However, it has the problem to deal with long video
sequences.

More recently, data mining approaches, with their promising capabilities in dis-
covering interesting patterns from large data sets, have been evolved to support fully
automated event detection. In our earlier studies, the PRISM classification rule algo-
rithm [4, 8] and decision-tree learning method [10] were applied for event detection.
However, the rules induced by the PRISM algorithm may not exclude each other
and possess no execution priority order. Such situations are called conflicts and are
difficult to cope with in the real application. Alternatively, the decision-tree learning
algorithm was applied in our recent work [10], which avoids the conflicts by adopt-
ing the divide-and-conquer approach. Meanwhile, in [38], the multilevel sequential
association mining is introduced to explore associations among the audio and visual
cues, classify the associations by assigning each of them with a class label, and use
their appearances in the video to construct video indices. However, the source video
clips are required to have all the commercials removed.

To our best knowledge, almost all the classification methods adopted in the video
event detection area are model-based approaches, which present some good qualities
when the video data are with a high level of consistency. For instance, they are gener-
ally with an explicit model representation and computationally efficient for new data
classification. However, they inevitably suffer from the data inconsistency problem in
the sense that they are targeted to achieve the global approximation. The IBL mecha-
nism, on the other hand, is capable of dealing with this issue at the possible cost of the
high computational requirement, implicit rule representation, and noise sensitivity.
Therefore, in our framework, the Nearest Neighbor with Generalization (NNG) [29],
a generalized IBL mechanism with a nearest neighbor like algorithm using nonnested
generalized exemplars, is adopted together with the proposed prefiltering process to
overcome these obstacles.
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12.3 Goal Shot Detection

12.3.1 Instance-Based Learning

Instance-based learning (IBL) is a conceptually intuitive approach to approximate
the real-valued target functions, which in our case are the classification functions. In
brief, the learning in IBL starts with the storage of the presented training instances
S = {<Ii , Li>, i = 1, 2, . . . , N }. Here, <Ii , Li>denotes a training instance, where
Ii is represented by an attribute set {ai j } with the size of T (i.e., j = 1, 2, . . . , T }
and Li is the class label, and N indicates the number of instances in the training
set. In our case, Li ∈ L , where L = {yes, no} denotes the two class labels of the
instances. The class label “yes” indicates a goal event and “no” indicates it is not a
goal event. As opposed to the model-based approach where S is used to construct
a (parametric) model and is then discarded, the training instances contribute in a
more direct way to the inference result. More specifically, when a new query instance
Q = {aq j , j = 1, 2, . . . , T } is encountered, the relationship of the query instance Q
with the instances from S is examined to assign a target function value (class label
Lq ) for Q. As illustrated in Figure 12.1, the simplest way to define the relationship is
to apply a certain distance metric (e.g., Euclidean distance, Manhattan or city-block
metric, etc.) and the class of Q is set to Lx , where Lx is the label of the closest instance
Ix ∈ S in terms of Q.

However, several key aspects or issues have to be taken into considerations in this
simple scheme.

1) How to define the attribute set {ai j } for each instance?
2) A basic distance metric, say Euclidean distance, between two instances Q and Ix

is defined as follows:

|Q, Ix | =
√(

aq1 − ax1

)2 + (
aq2 − ax2

)2 + · · · + (
aqT − axT

)2
(12.1)

As can be seen from Eq. (12.1), each attribute will have exactly the same influence
on the decision making, which is generally not the case for video event detection.
Therefore, how to derive suitable attribute weights from the training set becomes
an essential problem improve the distance metric.

S

Q

Ix 

Fig. 12.1. The basic IBL mechanism.
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3) The scheme is sensitive to the noisy data. For instance, if instance Ix is corrupted
by the noise, instance Q might be misclassified. Therefore, a solution must be
sought to dramatically reduce the effect of the noise.

4) In the current scheme, it would be quite time-consuming for a data set with a
realistic size because all the training instances Ii ∈ S need to be scanned in order
to classify each test instance Q. The computational cost must be greatly reduced
for the sake of real-time processing.

5) Different from the model-based approaches that present the knowledge explicitly
by the constructed models, such as the rules in PRISM and the tree structure in
the decision tree algorithm, the knowledge is expressed implicitly in IBL, which
usually impedes the problem understanding.

In the following sections, all the above-mentioned issues will be detailed. More
specifically, we will discuss the video feature extraction in Section 12.3.2 to address
the first aspect, i.e., the construction of the attribute set {ai j}. Then the remaining
issues are tackled by the prefiltering process and the generalized IBL scheme in
Sections 12.3.3 and 12.3.4, respectively.

12.3.2 Multimodal Analysis of Soccer Video Data

12.3.2.1 Shot-Based Video Event Mining

There are two widely used schemes for modeling and mining videos—shot-based
approach and object-based approach. The shot-based approach divides a video se-
quence into a set of collections of video frames with each collection representing a
continuous camera action in time and space, and sharing the similar high-level fea-
tures (e.g., semantic meaning) as well as similar low-level features like color and
texture [16]. In the object-based modeling approach, temporal video segments repre-
senting the life-span of the objects as well as some other object-level features are used
as the basic units for video mining. Object-based modeling is best suitable where a
stationary camera is used to capture a scene (e.g., video surveillance applications). In
such a setting, shot-based modeling is not applicable since there is one and only one
long shot according to the traditional shot definition [16]. In contrast, a soccer video
sequence typically consists of hundreds of shots, with their durations ranging from
seconds to minutes. Although an event boundary does not necessarily coincide with
a shot boundary in soccer videos, there are several good reasons for using shot-based
event detection for soccer videos:

1) First of all, the occurring of certain soccer events is often indicated by the vi-
sual/audio clues in a shot with some temporal constraints. For example, a corner
kick event typically starts a new shot in which both the player and a corner of the
playfield are present followed by a camera pan during the first seconds of that shot.
As another example, a goal shot is usually followed by another shot showing the
excitement of the commentator and the crowd. A foul event is usually accompanied
by a close-up shot of a referee.
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2) Shot-based modeling, while it conforms to the hierarchical (i.e., scene/shot hi-
erarchy) semantic modeling of video data for easy browsing and searching, also
provides important visual cues critical for event mining during the process of
shot detection. In addition, based on our experience with approximately 30 soccer
videos with different production styles, audio cues, especially the crowd noise
level, tend to be more consistent within a shot.

For the above reasons, in this chapter, we focus on the shot-based approach for
event mining in soccer videos. Although shot detection has a long history of research,
it is not a completely solved problem [19], especially for sports videos. According
to [17], due to the strong color correlation between soccer shots, a shot change may
not be detected since the frame-to-frame color histogram difference is not significant.
Second, camera motions and object motions are largely present in soccer videos to
track the players and the ball, which constitute a major source of false positives
in shot detection. Third, the reliable detection of gradual transitions, such as fade
in/out, is also needed for sports videos. We also need to take into consideration the
requirements of real-time processing as it is essential for building an efficient sports
video management system.

In this chapter, the visual feature extraction is based on video shots. Thus, a
three-level filtering architecture is used for shot detection, namely pixel-histogram
comparison, segmentation map comparison, and object tracking. The pixel-level com-
parison basically computes the differences in the values of the corresponding pixels
between two successive frames. This can, in part, solve the strong color-correlation
problem because the spatial layout of colors also contributes to the shot detection.
However, though simple as it is, it is very sensitive to object and camera motions.
Thus, to address the second concern of camera/object motions, the histogram-based
comparison is added to pixel-level comparison to reduce its sensitivity to small rota-
tions and slow variations. However, the histogram-based method also has problems.
For instance, two successive frames will probably have the similar histograms but
with totally different visual contents. On the other hand, it has difficulty in handling
the false positives caused by the changes in luminance and contrast. The reasons of
combining the pixel-histogram comparison in the first level filtering are twofolds.
(1) Histogram comparison can be used to exclude some false positives due to the
sensitivity of pixel comparison, while it would not incur much extra computation
because both processes can be done in one pass for each video frame. Note that the
percentage of changed pixels (denoted as pixel change percent) and the histogram
difference (denoted as histo change) between consecutive frames, obtained in pixel-
level comparison and histogram comparison respectively, are important indications
for camera and object motions and can be used to extract higher level semantics for
event mining. (2) Both of them are computationally simple. By applying a relatively
loose threshold, we can ensure that most of the correct shot boundaries will be in-
cluded, and in the meanwhile, a much smaller candidate pool of shots is generated at
a low cost.

We take the third observation into account by introducing two other filters, namely
segmentation map comparison and object tracking, which are implemented on the
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Fig. 12.2. An example segmentation mask map. (a) An example soccer video frame; (b) the

segmentation mask map for (a).

basis of an unsupervised object segmentation and tracking method proposed in our
previous work [6, 7]. A novel feature introduced is the segmentation mask map of
a video frame, which can be automatically extracted and contains the segmentation
result of that frame. In other words, a segmentation mask map contains the significant
objects or regions of interests extracted from that video frame. Thus, the pixels in
each frame have been grouped into different classes (e.g., 2 classes), corresponding
to the foreground objects and background areas, respectively. Then two frames can
be compared by checking the differences between their segmentation mask maps.
An example segmentation mask map is given in Figure 12.2. The segmentation mask
map comparison is especially effective in handling the fade in/out effects with drastic
luminance changes and flash light effects [9]. In addition, to better handle the situation
of camera panning and tilting, the object tracking technique based on the segmen-
tation results is used as an enhancement to the basic matching process. Since the
segmentation results are already available, the computation cost for object tracking is
almost trivial compared to those manual template-based object tracking methods. It
needs to be pointed out that there is no need to do object segmentation for each pair
of consecutive frames. Instead, only the shots in the small candidate pool will be fed
into the segmentation process. The performance of segmentation and tracking is fur-
ther improved by using incremental computation together with parallel computation
[36]. As a result, the combined speed-up factor can achieve 100–200. The time for
segmenting one video frame ranges from 0.03 to 0.12 second depending on the size
of the video frames and the computer processing power.

12.3.2.2 Visual Feature Analysis and Extraction

In the proposed framework, multimodal features (visual and audio) are extracted
for each shot based on the shot boundary information obtained in the shot de-
tection step. The proposed video shot detection method can not only detect shot
boundaries, but also produce a rich set of visual features associated with each
video shot. For examples, the pixel-level comparison can produce the percent-
age of changed pixels between consecutive frames, while the histogram compar-
ison provides us with the histogram differences between frames, both of which
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Fig. 12.3. Visual feature analysis and extraction.

are very important indications for camera and object motions. In addition, the
object segmentation can further provide us with the higher level semantic infor-
mation such as the object locations and foreground/background areas. By taking
these advantages brought by video shot detection, we include the following five
visual features in our multimedia data mining framework for soccer goal detection,
namely pixel change percent, histo change, background mean, background var, and
grass ratio. Here, pixel change percent denotes the average percentage of the changed
pixels between the consecutive frames within a shot. Similarly, histo change repre-
sents the mean value of the frame-to-frame histogram differences in a shot. Obviously,
as illustrated in Figure 12.3, pixel change percent and histo change can be obtained
simultaneously and at a low cost during the video shot detection process. As mentioned
earlier, both features are important indications of camera motion and object motion.
For example, a close-up shot with a high pixel-change value and a low histo change
value usually indicates the object motion but a slow camera motion. Usually in global
shots, the visual effects of object motion or camera motion are not that significant,
and thus, low values for both pixel change and histo change can be observed.

While pixel change percent and histo change can be easily obtained, the
grass ratio feature is derived from the background var and background mean fea-
tures which can be obtained via object segmentation (see Figure 12.3). grass ratio is
an important domain-specific feature for soccer highlights detection [12]. As we can
see from Figure 12.4 (a) and (b), a large amount of grass areas are present in global
shots (including goal shots), while less or hardly any grass areas are present in the
mid- or the close-up shots (including the cheering shots following the goal shots).
Another observation is that the global shots usually have a much longer duration
than the close-up shots. In this study, the mean value of grass-ratio within a shot is
used to indicate the shot type (global, close-up, etc.). However, it is a challenge to
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Fig. 12.4. (a) A sample frame from a goal shot (global view); (b) a sample frame a close-

up shot; (c) object segmentation result for (a); (d) object segmentation result for (b); and (e)

background variance values for frame 1 and frame 2.

distinguish the grass colors from others because the color values may change under
different lighting conditions, different play fields, different shooting scales, etc. The
method proposed in [18] relies on the assumption that the play field is always green
to extract the grass areas, which is not always true for the reasons mentioned above.
The methods based on the dominant color for grass area detection are more robust
[17]. Our proposed method also does not assume any specific value for the play field
color. The proposed grass area detection and feature extraction process is conducted
in the following steps.

First, the object segmentation component from the segmentation map comparison
filter (see Figure 12.3) is used to segment the video frames drawn at the 50-frame
interval into the background areas (grass, crowd, etc.) and foreground areas (player,
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ball, etc.). It is worth noting that the segmentation is conducted in the HSV color
space since it is a proven perceptual color space particularly amenable to color image
analysis [11]. As shown in Figure 12.4 (c) and (d), the foreground areas are marked
with the gray color and the background areas are marked with the black color. It can be
observed that the grass field tends to be much smoother in terms of its color and texture
distributions. Thus, for each frame, the color variance of each class is captured using
the standard deviation of its pixels’ values. The class with a smaller color variance is
called background, and the mean and variance of background pixels are recorded for
each frame. As the segmentation mask maps shown in Figure 12.4, in the global view
frames (see Figure 12.4(b)), the grass area tends to be detected as the background with
low background variance values (see Figure 12.4(e)). On the other hand, in close-up
frames (see Figure 12.4(a)), the background is very complex and may contain crowd,
signboard, etc., resulting in higher background variance values, as can be seen from
Figures 12.4(c) and 12.4(e). Therefore, the background is considered as a candidate
grass area if its background var is less than a small threshold. The grass ratio of
that frame is then set temporarily to the ratio of the background area within that
frame.

The second step is to select reference frames to learn the field colors. All the
frames containing candidate grass areas identified in previous step are considered
as the reference frames. The background mean value of a reference frame actually
represents the mean color value of a candidate grass area. Thus, their corresponding
background mean values are collected, and the color histogram is then calculated over
the pool of the possible field colors collected for a single video clip. However, prior to
the histogram calculation, a prefiltering step is needed to filter out the outliers in the
candidate pool by taking out those shots that are too short and those shots whose back-
ground mean values are out of a reasonable scope of the average background mean.
Another way to improve this could be to select those reference frames with their
grass ratio values greater than a threshold, and such frames are more likely to come
from global shots. Based on our observations on a large set of video data, there are
two possible situations in the histogram: (1) there is a single peak in the histogram,
indicating a good video quality and stable lightning conditions, and (2) there are mul-
tiple peaks in the histogram, which correspond to the variations in grass colors caused
by camera shooting scale and lightning condition. For example, Figure 12.5 depicts
the histogram distribution of background mean values of the reference frames from a
20-minute long soccer video sequence. It can be observed from this figure that most
of the background mean values of the reference frames fall into two major histogram
bins. By carefully studying the data for this video, we found that the reference frames
from the close-up shots form the left peak in Figure 12.5; while the right peak mainly
consists of reference frames from the global shots. We can also tell from this figure
that the number of close-up reference frames is much smaller than that of the global
reference frames. This conforms to the observation that the global shots usually have
a much longer duration than the close-up shots. In situation (1), the single peak is
selected as the grass pixel detector to calculate the actual grass ratio for each sample
frame; while in situation (2), multiple peaks within a reasonable range are all selected
as grass detectors. The threshold for selecting the histogram peaks can be adjusted.
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Fig. 12.5. The histogram of the candidate grass values for a 20-minute long soccer video. Two

peaks correspond to two major types of shooting scales in the video data—global and close-up.

Figure 12.6 shows the detected grass areas for two sample frames from different types
of shots (close-up, global, etc.), and the results are very promising.

Thus, the shot-level features background var, background mean, and grass ratio
are computed as the mean values of the corresponding frame-level features within the
shot. It is worth noting that the proposed grass area detection method is unsupervised
and the grass values are learned through unsupervised learning within each video
sequence, which is invariant to different videos.

The major theoretical advantages of our approach are summarized as follows.

1) The proposed method allows the existence of multiple dominant colors, which
is flexible enough to accommodate variations in grass colors caused by different
camera shooting scales and lightning conditions.
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Fig. 12.6. Detected grass areas (black areas on the right column) for two sample video frames.
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2) In the learning process, the proposed method adopts an automated and robust
approach to choose the appropriate reference frames for the learning process.

While the existing dominant color-based methods tend to ignore the fact that the
nongrass areas may have the similar color (e.g., signboards, player clothes, etc.) to that
of the filed and thus introduce false positives, the propose method uses an advanced
strategy to obtain the grass ratio value at the region level instead of the pixel level
to alleviate this problem with minor extra effort. For example, as can be seen from
the upper-left sample frame in Figure 12.6, the green area at the top of the frame (the
area inside the blue polygon) is correctly identified as nongrass area due to the good
localization properties of the segmentation method [7].

12.3.2.3 Audio Feature Analysis and Extraction

Extracting effective audio features is essential in achieving a high distinguishing
power in audio content analysis for video data. A variety of audio features have been
proposed in the literature for audio track characterization [22, 28]. Generally, they
fall into two categories: time domain and frequency domain. With respect to the
requirements of specific applications, the audio features may be extracted at different
granularities such as frame level and clip level. In this section, we describe several
features that are especially useful for classifying audio data.

The proposed framework exploits both time-domain and frequency-domain audio
features. To investigate the semantic meaning of an audio track, the high-level features
representing the characteristics of a comparable longer period are necessary. In our
case, we explore both clip-level features and shot-level features, which are obtained
via the analysis of the finer granularity features such as frame-level features. In this
framework, the audio signal is sampled at 16,000 Hz, i.e., 16,000 audio samples
are generated for a 1-s audio track. The sample rate is the number of samples of a
signal that is taken per second to represent the signal digitally. An audio track is then
divided into clips with a fixed length of 1 s. Each audio feature is first calculated on
the frame level. An audio frame is defined as a set of neighboring samples which last
about 10–40 ms. Each frame contains 512 samples shifted by 384 samples from the
previous frame as shown in Figure 12.7. A clip thus includes around 41 frames. The
audio feature analysis is then conducted on each clip (e.g., an audio feature vector is
calculated for each clip).

12.3.2.4 Audio Feature Analysis

The generic audio features utilized in our framework can be divided into three groups,
namely, volume related features, energy related features, and Spectrum Flux related
features.

� Feature 1: Volume. Volume is one the most frequently used and the simplest audio
features. As an indication of the loudness of sound, volume is very useful for soc-
cer video analysis. Volume values are calculated for each audio frame. Figure 12.8
depicts samples of two types of sound tracks: speech and music. For speech, there
are local minima which are close to zero interspersed between high values. This
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Fig. 12.7. Clip and frames used in feature analysis.

is because when we speak, there are very short pauses in our voice. Consequently,
the normalized average volume of speech is usually lower than that of music. Thus,
the volume feature will help not only identify exciting points in the game but also
distinguish commercial shots from regular soccer video shots. According to these
observations, four useful clip-level features related to volume can be extracted: (1)
average volume (volumn mean); (2) volumn std, the standard deviation of the vol-
ume, normalized by the maximum volume; (3) volumn stdd, the standard deviation
of the frame to frame difference of the volumes, and (4) volume range, the dynamic
range of the volume, defined as (max(v) − min(v))/ max(v).

� Feature 2: Energy. Short-time energy means the average waveform amplitude de-
fined over a specific time window. In general, the energy of an audio clip with music
content has a lower dynamic range than that of a speech clip. The energy of a speech
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Fig. 12.8. Volume of audio data.
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clip changes frequently from high peaks to low peaks. Since the energy distribu-
tion in different frequency bands varies quite significantly, energy characteristics
of subbands are explored as well. Four energy subbands are identified, which cover
respectively the frequency interval of 1Hz-(fs/16)Hz, (fs/16)Hz-(fs/8)Hz, (fs/8)Hz-
(fs/4)Hz, and (fs/4)Hz-(fs/2)Hz, where fs is the sample rate. Compared to other
subbands, subband1 (1Hz-(fs/16)Hz) and subband3 ((fs/8)Hz-(fs/4)Hz) appear to
be most informative. Several clip-level features over subband1 and subband3 are
extracted as well. Thus, the following energy-related features are extracted from
the audio data: (1) energy mean, the average RMS (Root Mean Square) energy; (2)
The average RMS energy of the first and the third subbands, namely sub1 mean and
sub3 mean, respectively; (3) energy lowrate, the percentage of samples with the
RMS power less than 0.5 times of the mean RMS power; (4) The energy-lowrates
of the first subband and the third band, namely sub1 lowrate and sub3 lowrate,
respectively; and (5) sub1 std, the standard deviation of the mean RMS power of
the first subband energy.

� Feature 3: Spectrum Flux. Spectral Flux is defined as the two norms of the frame-
to-frame spectral amplitude difference vector. Spectrum flux is often used in quick
classification of speech and nonspeech audio segments. In this study, the following
Spectrum Flux related features are explored: (1) sf mean, the mean value of the
Spectrum Flux; (2) the clip-level features sf std, the standard deviation of the Spec-
trum Flux, normalized by the maximum Spectrum Flux; (3) sf stdd, the standard
deviation of the difference of the Spectrum Flux, which is also normalized; and (4)
sf range, the dynamic range of the Spectrum Flux.

Please note that the audio features are captured at different granularities: frame-
level, clip-level, and shot-level, to explore the semantic meanings of the audio track.
Totally 15 generic audio features are used (4 volume features, 7 energy features, and
4 Spectrum Flux features) to form the 15 out of 17 components of an audio feature
vector for a video shot. Another two audio features are directly derived from the
volume related features. For each shot, the feature sumVol keeps the summation of
the peak volumes of its last 3-s audio track and its following shot’s first 3-s track (for
short, nextfirst3). Then the mean volume of its nextfirst3 forms another audio feature
vol nextfirst3.

Once the proper video features and audio features have been extracted, they are
ready to be fed into the prefiltering step which is critical to the performance of the
proposed multimedia data mining framework for the reasons as discussed in next
subsection.

12.3.3 Prefiltering

As mentioned earlier, the obtained feature set may contain noisy data that were intro-
duced during the video production process. Moreover, the data amount is typically
huge and among them the number of goal shots only accounts for less than 1% in our
case. For the sake of accuracy and efficiency, it is judicious and essential to reduce
the density of exemplars that lie well inside the class boundaries whereas keep the
data points near the boundaries [29]. The basic idea is illustrated in Figure 12.9.
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Fig. 12.9. Prefiltering.

In Figure 12.9, let the black cubes be the positive instances whereas the white and
gray points represent the negative exemplars which are close to or far away from the
class boundary (the black polygon), respectively. It is intuitive that with the removal
of the gray points, the classification results for any unseen data remain the same while
the computational cost can be reduced.

Therefore, a prefiltering process is proposed to clean the data and to select a
small set of training exemplars using domain knowledge. Here, domain knowledge
is defined as the empirically verified or proven information specific to the application
domain that is served to reduce the problem or search space [29]. In general cases, both
positive and negative exemplars can be reduced on the basis of the above-mentioned
principle. However, as discussed earlier, the interested events (i.e., goal events in our
study) in the soccer video are quite scarce and are of great importance. Consequently,
the intention of the proposed prefiltering process is to greatly reduce the irrelevant
negative exemplars (nongoal events). Furthermore, as discussed in the Introduction
section, although some basic rules exist, the overall presentations of the videos are
generally varied from each other. Therefore, it would normally be a major challenge
in terms of achieving an effective trade-off between the generality and specialty
possessed by the source data, which is in fact one of the key reasons that a global
approximation might fail to capture. Fortunately, the ultimate goal of this process is
to remove the negative exemplars far away from the class boundaries (for short, they
will be called far-negative exemplars from now on). Therefore, in this section, we
present this prefiltering process using some computable observation rules with loose
thresholds on the soccer videos, which can be classified into two categories, namely
audio rules and visual rules.

12.3.3.1 Audio Rules

In the soccer videos, the sound track mainly includes the foreground commentary
and the background crowd noise. According to the observation and prior knowledge,
the commentator and crowd become excited at the end of a goal shot. In addition,
different from other sparse happenings of excited sound or noise, normally this kind
of excitement will last to the following shot(s). Thus, the duration and intensity of
sound can be used to capture the candidate goal shots and remove the far-negative
exemplars as defined in the following rule:
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� Rule 1: As a candidate goal shot, the audio track of its last 3 (or less) seconds and
that of the first 3-s (or less) of its following shot should both contain at least one
exciting point.

Here the exciting point is defined as a 1-s period whose volume is larger than
60% of the highest 1-s volume in this video. It is worth mentioning that actually this
volume threshold can be assigned to an even higher value for most of the videos.
However, based on our experiments, 60% is a reasonable threshold since the number
of the candidate goal shots can be reduced to 28% of the whole search space while
including all the goal shots. In addition, this rule performs as a data cleaning step to
remove some of the noise data because, though normally the noise data has a high
volume, it will not last for long.

12.3.3.2 Visual Rules

As mentioned earlier, we have two basic types of shots, close-up shots and global
shots, for soccer videos based on the ratio of the green grass area. We observe that
the goal shots belong to the global shots with a high grass ratio and are always
closely followed by the close-up shots that include cutaways, crowd scenes, and
other shots irrelevant to the game without grass pixels, as shown in Figure 12.10.
Figure 12.10(a)–(c) capture three consecutive shots starting from the goal shot (Figure
12.10(a)), and Figure 12.10(d)–(f) show another three consecutive shots where Figure
12.10(d) is the goal shot. As can be seen from this figure, within two consecutive shots
that follow the goal shot, usually there is a close-up shot (Figures 12.10(b) and (f),
respectively).

Fig. 12.10. Goal shots followed by close shots: (a)–(c) are three consecutive shots in a goal

event, where (a) is the goal shot and (b) is the close shot that follows the goal shot; (d)–(f) are

another goal event and its three consecutive shots, where (d) is the goal shot and (f) is the close

shot follows the goal shot.
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Fig. 12.11. Prefiltering process.

According to these observations, two rules are defined as follows:

� Rule 2: A goal shot should have a grass ratio larger than 40%.
� Rule 3: Within two succeeding shots that follow the goal shot, at lease one shot

should belong to the close-up shots.

Note that the threshold defined in Rule 2 can be altered to a higher value for most
of the videos. However, our experiments show that about 80% of the candidate pool
obtained after applying Rule 1 can be reduced using Rule 2 and Rule 3, which means
that only less than 6% of the whole search space remains as the input for the data
mining process. In addition, according to the prior knowledge, a goal shot normally
lasts more than 3 s, which can be used as an optional filter called Optional Rule. In our
case, since the search space has been dramatically reduced, this rule has small effects.
In summary, the workflow as well as the performance of the prefiltering process is
illustrated in Figure 12.11.

In summary, the prefiltering process is mainly targeted to solve the fourth problem
mentioned above. In other words, by reducing the number of far-negative exemplars
for the data mining process, the computational cost can be dramatically decreased. In
addition, some noisy data can also be filtered out by the audio rule.

12.3.4 Nearest Neighbor with Generalization (NNG)

As mentioned earlier, the basic IBL mechanism is sensitive to the noisy data. Although
the prefiltering process is capable of removing part of the noisy data, a generalized
IBL, called Nearest Neighbor with Generalization (NNG) [23], is adopted in our
framework to overcome this limitation.

Let T be the number of attributes in the attribute set, the basic idea for the NNG al-
gorithm is to create a group of T -dimensional rectangles or so-called hyper-rectangles,
where each of them covers a portion of examples without overlap. To simplify the
idea, Figure 12.12 shows a two-dimensional instance space with two classes of in-
stances (represented by the black and white cubes, respectively), and the possible
rectangular regions are created as the results of the generalization process. For more
detailed information about the generalization process, the interested readers can refer
to [23].
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Fig. 12.12. The basic idea of the NGG algorithm.

In brief, NNG represents a trade-off between the specificity of the basic IBL
scheme and the generality of the model-based approach. More specifically, the hyper-
rectangles can be considered as rules, which, when extracted, can facilitate knowledge
understanding. Given an unknown instance Q, it will be assigned the corresponding
class label if it falls within one of these rectangles, which is similar to the general
rule induction approaches. Otherwise, the usual nearest neighbor rule applies except
that the distances are calculated between Q and each of the rectangles (instead of the
instances). Formally, the difference between the instance Q and a rectangle R with
regard to its i th attribute (denoted as aqi and Ri , respectively) is defined as follows:

∣∣aqi − Ri

∣∣ =

⎧⎪⎨
⎪⎩

aqi − Rmax
i if aqi > Rmax

i

Rmin
i − aqi if aqi < Rmin

i

0 otherwise

(12.2)

Here, Rmax
i and Rmin

i denote the boundaries of the hyperrectangle R with regard to
the i th feature. As the distance is measured to a group of data points instead of one
single instance, it will greatly reduce the adverse effect of the noisy data, as long as
the noisy data accounts for a reasonable small portion of the instance set.

As far as the distance metric is concerned, as mentioned earlier, the basic Euclidean
function considers all the attributes with an equal relevance in decision making.
However, it is generally the case in event detection (and many of the other domains)
that the significance of the attributes with regard to the outcome varies from each other.
Therefore, an intuitive improvement toward the Euclidean function is to introduce the
attribute weights as w1, w2, . . . , and wT , and Eq. (12.1) can be redefined to calculate
the distance between instance Q and the hyperrectangle R as follows:

|Q, R| =
√

w2
1

∣∣aq1 − R1

∣∣2 + w2
2

∣∣aq2 − R2

∣∣2 + · · · + w2
T

∣∣aqT − RT

∣∣2
(12.3)

In our work, the dynamic feature weighting scheme proposed in [1] is adopted to
define the weights.

12.4 Experimental Results and Discussions

12.4.1 Video Data Source

Soccer game video files used in our experiments were collected from a wide range
of sources via the Internet. After excluding those video files that either have poor
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digital quality or do not contain any goal scene, there are 25 video files left, with
different styles and produced by different broadcasters. Those video files last from
several minutes to more than half an hour. The corresponding sound tracks have been
extracted from the original video files.

12.4.2 Video Data Statistics and Feature Extraction

12.4.2.1 Information Collecting

Information such as the total number of video frames and the durations is necessary
and can be obtained by using video editing software. The average duration and number
of frames are about 22 min and 35,000 frames, respectively.

To facilitate the extraction of audio and visual features that represent the media
contents, shot boundaries need to be located, which is achieved by parsing the video
files using the proposed shot detection algorithm. Because of the good performance
of the shot detection algorithm (with >92% precision and >98% recall value), only
little effort is needed to correct the shot boundaries. On an average, those soccer video
files contain about 184 shots. The detailed statistics of all the video files are listed in
Table 12.1.

Table 12.1. Detailed statistics of all the video data files

Files Frame # Shot # Duration ([hours:] minutes: seconds) Goal #

File 1 30,893 148 20:36 2

File 2 20,509 83 13:40 1

File 3 23,958 93 15:58 4

File 4 42,083 194 23:24 2

File 5 48,153 346 32:6 2

File 6 14,612 96 9:44 1

File 7 13,122 106 8:45 1

File 8 51,977 418 34:21 1

File 9 49,959 238 33:18 1

File 10 41,817 212 27:53 1

File 11 46,472 230 30:59 3

File 12 27,624 149 18:25 2

File 13 35,283 150 23:31 2

File 14 22,230 95 14:49 1

File 15 15,198 129 10:8 1

File 16 40,973 322 27:19 3

File 17 19,149 119 12:46 1

File 18 33,943 137 18:53 1

File 19 43,320 173 24:5 2

File 20 65,677 294 36:31 2

File 21 32,788 125 18:14 1

File 22 17,288 81 9:37 1

File 23 21,518 95 11:58 1

File 24 73,138 371 40:40 1

File 25 42,335 197 23:33 1

Total 874,019 4601 9:1:13 39
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12.4.2.2 Feature Extraction and Instances Filtering

Both visual and audio features are computed for each video shot via the multimodal
content analysis process presented in Section 12.3.2 and are contained in each feature
vector. Prefiltering techniques are applied to reduce the noise and outliers in the
original data set, which generates the candidate shots pool for the data mining stage.
The resulting pool size after prefiltering is 258.

12.4.3 Video Data Mining for Goal Shot Detection

These 258 candidate shots are randomly selected to serve as either the training data
or the testing data. In our experiments, two experiments are designed and the rigorous
fivefold cross-validation scheme is adopted to test the effectiveness of the proposed
framework. In other words, the whole data set is randomly divided into a training
data set and a testing data set in five times. Consequently, five different models are
constructed and tested by the corresponding testing data set.

The first experiment is designed to testify the effects of the proposed prefiltering
process in term of the accuracy and efficiency of the whole framework. Therefore,
the classifications are conducted with and without the prefiltering step and the perfor-
mance is summarized in Table 12.2. It is worth noting that the classification program
[39] we adopted was written in Java and is running on a 3.06 GHz Pentium 4 per-
sonal computer with 1 GB RAM. As can be seen from this table, the classification
results achieved with the integration of both NNG and the prefiltering process is quite
promising, where by average the recall and precision values reach around 90% and
84%, respectively. In addition, the prefiltering step plays an important role in improv-
ing the overall classification performance. More specifically, the accuracy rates are
more than double and the running time is reduced more than 95% by comparing to
the ones without the prefiltering process.

The intention of the second experiment is to compare the performance of this pro-
posed framework with our earlier approach where the C4.5 decision tree algorithm

Table 12.2. Classification performance of NNG on the testing data sets with and without the

prefiltering step

Recall Precision Running

Model # of goals Prefiltering Identified Missed Misidentified (%) (%) time (s)

1 15
Without 1 14 2 6.7 33.3 1.0

With 12 3 2 80.0 85.7 0.05

2 15
Without 6 9 7 40.0 46.2 1.84

With 14 1 3 93.3 82.4 0.05

3 13
Without 4 9 7 30.8 36.4 1.03

With 12 1 3 92.3 80.0 0.06

4 13
Without 4 9 6 30.8 40.0 1.26

With 12 1 2 92.3 85.7 0.05

5 12
Without 3 9 7 25.0 30.0 1.14

With 11 1 2 91.7 84.6 0.06

Average
Without 26.7 37.2 1.25

With 89.9 83.7 0.05
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Table 12.3. Classification performance of C4.5 decision tree on the testing data sets with and

without the prefiltering step

Model # of goals Prefiltering Identified Missed Misidentified Recall (%) Precision (%)

1 15
Without 4 11 3 26.7 57.1

With 12 3 3 80.0 80.0

2 15
Without 6 9 4 40.0 60.0

With 14 1 3 93.3 82.4

3 13
Without 3 10 8 23.1 27.3

With 12 1 3 92.3 80.0

4 13
Without 3 10 3 23.1 50.0

With 12 1 3 89.9 80.2

5 12
Without 4 8 4 33.3 50.0

With 11 1 3 91.7 78.6

Average
Without 29.2 48.9

With 89.9 80.2

is adopted [10]. Here, the comparison with the PRISM scheme [8] is not performed
because of its possible conflict problem discussed earlier. As an example, the PRISM
approach induces 31 and 19 rules for No and Yes classes, respectively, in one train-
ing model, where 6 of them are conflicting rules. Therefore, the PRISM approach is
excluded in our comparative experiment as many extra efforts are required to refine
the classification results. For the purpose of comparison, the same attribute set is ex-
tracted and the same fivefold cross-validation scheme is adopted to test the decision
tree based classification framework. In addition, the results are recorded by apply-
ing the classification algorithms with and without the prefiltering scheme, which has
exactly the same criteria as the ones used in the first experiment. Table 12.3 shows
the classification results, from which we have the following observations. First, the
prefiltering process is critical for both NNG and decision tree classification algo-
rithms in the sense that it greatly reduces the outliers and the noisy data. Second,
without the facilitation of the prefiltering process, both the recall and precision rates
achieved by the NNG algorithm are much lower than the ones obtained by the deci-
sion tree algorithm, which indicates that NNG is more sensitive to noise. However,
after the prefiltering process, the accuracy of NNG is higher than that of the decision
tree, which shows that NNG is more capable of dealing with the data inconsistency
problem. It is worth mentioning that since the C4.5 program we use was coded in C
language, the running time is not listed for comparison. Third, with the facilitation of
the proposed multimodal analysis and the prefiltering process, we are able to achieve
quite encouraging results by adopting various classification algorithms such as NNG
and C4.5 decision tree, which fully demonstrates the effectiveness and generality of
the proposed framework.

12.5 Conclusions

In this chapter, we have presented an effective multimedia data mining framework for
the detection of soccer goal shots by using combined multimodal content analysis,
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data prefiltering process, and generalized Instance-Based Learning (IBL) scheme. The
proposed framework has many implications in video indexing and summarization,
video database retrieval, semantic video browsing, etc. The proposed method allows
effective and efficient mining of soccer goals by using a selective mixture of low-
level features, middle-level features, and object-level features. By using the object-
segmentation results (segmentation mask maps) produced during shot detection, some
high-level features such as the grass ratio can be derived at a low cost, which are further
used in the detection of the goal events. The proposed framework takes into account
the various production styles of soccer videos by adopting an Instance-Based Learning
scheme known for its focus on the local optimization for a particular query instance.
In particular, a data prefiltering step is performed on the raw video features with the
aid of domain knowledge, in order to alleviate the problem of noise sensitivity of IBL.
The basic IBL is further generalized by using the so-called Nearest Neighbor with
Generalization (NNG) for two main purposes, that is, to further reduce the adverse
effect of noise data, and to expedite the classification process. Experiments have been
conducted to examine the effect of the prefiltering process and the performance of
the proposed multimedia data mining framework when compared with other popular
model-based methods like decision trees. Our experiments over diverse video data
from different sources have demonstrated that the proposed framework is highly
effective in classifying the goal shots for soccer videos. Our future work will be
conducted in the following three directions: (1) to extend the proposed framework
to detect other soccer events (e.g., fouls, free kicks, etc.), (2) to identify more high-
level semantic features that can be directly or indirectly derived from the existing
object-level features, and (3) to investigate more effective methods for temporal data
modeling and mining.
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13. Exploiting Spatial Transformations
for Identifying Mappings in Hierarchical
Media Data

K. Selçuk Candan, Jong Wook Kim, Huan Liu, Reshma Suvarna, and
Nitin Agarwal

Summary. The functioning of a multimodal integration system requires metadata, such as

ontologies, that describe media resources and media components. Such metadata are generally

application and domain dependent, which causes difficulties when media need to be shared

across domains. Thus, there is a need for a mechanism that can relate the key terms and/or media

components in data from different sources. In this chapter, we present an approach for mining

and automatically discovering mappings in hierarchical media data, metadata, and ontologies,

using the structural information inherent in hierarchical data. This approach is applicable even

when the mappings are imperfect, fuzzy, and many-to-many. We show that structure-based

mining of relationships provides high degrees of precision.

13.1 Introduction

Semantic networks of media, wherein different applications can exchange information
and integrate multimodal data, require information about each medium to be repre-
sented in a detailed and structured manner. To enable such information exchanges,
various hierarchical metadata frameworks have been proposed. Furthermore, many
multimedia standards define objects as structured or hierarchical collections of media
data components. Examples include virtual reality modeling languages (e.g., X3D)
and media content description frameworks (e.g., MPEG7 [9]). For example, X3D [10],
a file format and related access services for describing interactive 3D objects and
worlds, uses a hierarchical structure to describe a scenegraph. When integrating data
from different sources, a mechanism to mine and relate semantically similar but syn-
tactically different data and metadata is needed. In this chapter, we present algorithms
to automatically mine mappings in hierarchical media data, metadata, and ontologies.

13.1.1 Integration of RDF-Described Media Resources

If application and media content experts could easily associate metadata with each
resource they create, then this metadata could be used by integration engines to
increase efficiency and precision. In order to enable this, the metadata format used
by different applications must be compatible. Ontologies, formalisms that define

259
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Fig. 13.1. Two similar hierarchical namespaces.

the relationships among terms in a given application, describe the context in which
metadata are applied. They are used to link, compare, and differentiate information
provided by various application resources.

RDF, for instance, provides a rich data model where entities and relationships
can be described. RDF uniquely identifies property names by using the Namespace
mechanism [8]. A namespace can be thought of as a context or an ontology that
gives a specific meaning to what might otherwise be a general term. It provides a
method for unambiguously identifying the semantics and conventions governing the
particular use of property names by uniquely identifying the governing authority of
the vocabulary. Although with the help of namespaces, we can uniquely identify
and relate the metadata to a particular governing authority or a community, there
is no straightforward way to map and relate terms or properties among different
communities. Consider the two hierarchical namespaces provided in Figure 13.1
(the hierarchy usually corresponds to the concept/class structure) of the underlying
domains. As it is implied by the similar structures of these namespace hierarchies, the
terms shot and sequence are semantically related. Therefore, if the user integrates two
data domains each using one of these two namespaces, whenever a query is issued
using the property name shot, the content having the property name sequence should
also be retrieved.

Automatic mapping of the semantically similar but syntactically different terms
from the different namespaces necessitates the integration of content from indepen-
dently created data sources. An automated mechanism that relates the common and
uncommon terms (components) of various metadata communities is needed.

13.1.2 Matching Hierarchical Media Objects

Figure 13.2 shows an example hierarchical scenegraph which can be represented in
X3D [10]. X3D nodes are expressed as XML [11] elements, that is, tagged names. The
hierarchical structure and the nodes in this hierarchy give information about the rela-
tionships between the tags: the document structure corresponds to the structure of the
scenegraph of the 3D world. Consequently, given two similar multimedia object hier-
archies (i.e., two similar worlds), it should be possible to identify associations between
these nodes using an analysis of the hierarchical document structures themselves.
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13.1.3 Problem Statement

The problem we address in this chapter is to mine mappings between the nodes of
hierarchical media data, metadata, and ontologies. The main observation is that the
structural similarity between two given trees (such as hierarchical media objects,
XML documents, or name spaces) can provide clues about the semantic relationships
between their nodes.

In general, the nodes in the two trees can be divided into common and uncommon
nodes. The common nodes are those shared by both trees and can either have the same
labels or (in the case of multimedia data) they may have application dependent features
that provide nonzero or greater-than-a threshold degrees of similarities [12]. In other
words, common nodes are those nodes in the two trees that are known to be related,
whereas the uncommon nodes are those nodes in the two trees that are not known
whether (and how) they relate to the nodes in the other tree. In many works [13–15],
it is assumed that the mapping between the two input trees relates each one node of
one schema to only one node of the other; thus, the initial partial mapping is 1-to-1.
Furthermore, these works assume that the input mapping is nonfuzzy (i.e., a given
node perfectly maps to the other one or does not map to that node at all). We also
used these assumptions in our earlier work [16,17]. These assumptions might be valid
when the two tree structures represent metadata, such as schemas, where the mapping
is naturally 1-to-1 and binary. However, when the two input trees being compared are
media trees (such as MPEG7 [9] or X3D [10]), two complications arise:

� First, the known mappings between the nodes may be 1-to-many or many-to-many;
that is, a given node may correspond to multiple nodes in the other tree.

� Second, the correspondence between the object nodes may be imperfect, that is,
fuzzy or similarity-based.
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Therefore, the many-to-many and fuzzy nature of the known correspondences need to
be considered while matching the nodes of the input trees.

In this chapter, we do not focus on how common nodes are discovered, as this
is a domain specific task. Our aim is to relate the uncommon nodes of two given
hierarchical structures, based on the information provided by the structural relation-
ships between the common nodes. Therefore, formally, we can state the problem as
follows:

Given

� two trees, T 1(V 1, E1) and T2(V2, E2), where V denotes the set of nodes in a tree
and E denotes the set of edges between the nodes, and

� a partially known mapping (or correspondence) function, μ : V1 × V2 → [0, 1] ∪
{⊥}, between the nodes in V1 and V2
(If μ(vi , vj) = ⊥, it is not known whether vi is related to v j ; i.e., vi and v j are
unmapped)

estimate the degree of mapping for vi and vj, where μ(vi , vj) = ⊥, using the structural
information embedded in T 1 and T 2.

13.1.4 Our Approach

We introduce a multistage algorithm that mines mappings in hierarchical media data,
metadata, and ontologies using the inherently available structural information. This
algorithm uses Multidimensional Scaling [2–5] to map the nodes of two different
but similar structures (multimedia hierarchies, ontologies, or namespaces) into their
private spaces and then exploits the weighted Procrustes [6,7] technique to align the
two private spaces and their nodes within such that the syntactically different but
semantically similar components are mapped to each other.

13.2 Related Work

Matching has been recognized as an important problem in diverse application do-
mains. For instance, automated schema or model matching, which takes two schemas
as input and produces a mapping between elements of the two schemas that correspond
semantically to each other, has been investigated in various data management con-
texts, including scientific, business, and Web data integration [13, 18–20]. A survey
of the techniques, for the automated schema matching problem, presented in [21],
classifies these based on various dimensions, including whether data instances are
used for schema matching, whether linguistic information, key constraints, or other
auxiliary information are used for matching, and whether the match is performed
for individual elements (such as attributes) or for complex structures. Using the ap-
proach we presented in this chapter, both data instances and hierarchical schemas
can be matched. The approach does not need additional linguistic information or key
constraints, although these can certainly help improving the overall precision. The
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proposed approach uses not only the individual elements but the entire structures to
produce the required mappings between the elements of the two schemas.

Clio [22] accepts XML and RDF documents, a name matcher provides initial
element-level mapping, and a structural matcher provides the final mapping. LSD [13]
uses machine-learning techniques to match a new data source against a previously
determined global schema; thus, it needs a user-supplied mapping as well as a training
process to discover characteristic instance patterns and matching rules. SKAT [20,23]
uses first-order logic rules to express match and mismatch relationships between two
ontologies. Name and structural matching is performed on the basis of the is-a rela-
tionships between the intersection (or articulation) ontology and source ontologies.
The work in [14] uses structures (schema graphs) for matching; matching is performed
node by node starting at the top; thus, this approach presumes a high degree of sim-
ilarity (i.e., low structural difference) between the schemas. Furthermore, unlike our
approach, if no match is found for a given node, user intervention is required to select
a match candidate. After performing linguistic matching of the nodes, Cupid [24]
transforms the original schema into a tree and then performs bottom-up structure
matching, based on the similarity of the leaf sets of pairs of elements. As in our work,
the DIKE system [15] uses the distance of the nodes in the schemas to compute the
mappings; while computing the similarity of a given pair of objects, other objects
that are closely related to both count more heavily than those that are reachable only
via long paths of relationships. Similar approaches, where closer entities in a given
graph add more to the overall similarity than farther entities, have also been used
while mining Web document associations [25–27] as well as for finding similarities
between terms in a natural language [28–31].

Recently there has been a large body of relevant work for efficient indexing
and retrieval of tree-structured data [32–39]. Most of these works focus on indexing
and exact matching of paths and path-expressions on trees. The problem of inexact
matches of trees and graphs, on the other hand, is significantly harder. Structural
matching techniques between two labeled trees with potential “rename” mismatches
and other differences are used in [40–42]. These works use the tree edit-distance
concept [43–46] to measure how similar two trees are. A good survey of approaches
to tree edit- and alignment-distance problems can be found in [47]. Unfortunately,
the general unordered edit-distance problem has been shown to be NP-complete [40].
Certain special cases can be solved efficiently if appropriate local edit costs are
available. In [40,43], for instance, postorder traversal-based algorithms are provided
for calculating the editing distance between ordered, node-labeled trees. Zhang and
Shasha [42] extend the work to connected, undirected, acyclic, graphs where only
edges are labeled. They first show that the problem is, as expected, NP-hard and
then they provide an algorithm for computing the edit distance between graphs where
each node has at most two neighbors. Chawhate et al. [48,49] provide alternative, and
more flexible, algorithms to calculate the edit distance between ordered node-labeled
trees. Schlieder [50, 51] introduces a query language, approXQL, for retrieval of
approximate matches in hierarchical data. ApproXQL relies on an edit-distance-based
approach, where the cost of a sequence of transformations provides the similarity
between a query and a result. In order to deal with the NP-complete nature of the
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edit-distance-based approaches and render similarity-based search applicable in large
databases, Kailing et al. [52] introduce a set of filter methods (e.g., filtering based
on heights and degrees of the nodes) for structural and content-based information in
tree-structured data. Papadopoulos and Manolopoulos [53] introduce the concept of
graph histograms, where given a graph, a histogram representing the entire graph is
obtained by calculating the degree of each vertex of the graph. Each vertex corresponds
to a different histogram bin, and the bins are sorted in the decreasing order. The
difference between two graphs, then, is computed as the L1 distance between their
corresponding histogram vectors. The concept of graph probes, which are essentially
filters invariant across graph or subgraph isomorphisms, are introduced in [54, 55].
Other research in tree and graph similarity can be found in [56–61]. Unlike our
approach where the structural match between the nodes is captured holistically in the
multidimensional space obtained through the MDS transformation, the edit-distance-
based approaches associate explicit costs to each one of the local tree edit operations
of deleting, inserting, and relabeling of the nodes and aim finding a minimum-cost
sequence of such edit operations that would transform one of the input trees into the
other. Thus, in addition to being costly in terms of execution time, these approaches
need appropriate local edit costs to function. Furthermore, unlike our approach that
evaluates similarities between individual nodes, these approaches generally evaluate
similarities between entire trees and graphs.

13.3 Structural Matching

The use of structural information for mining of semantic relationships is an established
technique. We used structural information available on the Web for mining Web docu-
ment associations, summarizing Web sites, and answering Web queries [25–27]. The
language taxonomies and IS-A hierarchies [28–31] are used to define the similarity
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Fig. 13.3. MDS mapping of four data points onto a two-dimensional space.
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and distance between terms in natural language. Other techniques are discussed in the
related work section (Section 13.2). These mainly rely on the observation that given a
tree, T (V, E) and two nodes, a and b, in the tree, we can compute a distance, d(a, b),
between the nodes by considering the structure of the tree, for instance by counting
the number of edges between them. The main challenge we address in this chapter
is to find the degree of mapping (or similarity) between two nodes in two different
trees, where there may be no common structure to compare these two nodes. This
is because the two trees may have arbitrarily different structures, finding a mapping
between the nodes is not trivial.

In order to match two nodes in two different trees, we need to find a mapping
such that the distance values in two trees between the common nodes are preserved
as much as possible. In this chapter, we present an approach which addresses this
challenge by mapping the two trees into a shared space using the matched common
nodes and comparing the unmapped nodes in this shared space. The proposed solution
can be broken down into four steps:

1. Map the nodes of T 1 and T 2 into their private multidimensional spaces, S1 and
S2, both with the same number (k) of dimensions.

2. Identify transformations required to align the space S1 with the space S2 such that
the common nodes of the two trees are mapped as close to each other as possible
in the resulting aligned space.

3. Use the same transformations to map the uncommon nodes in S1 onto S2.
4. Now that the nodes of the two trees are mapped into the same space, compute

their similarity or distance in this space and/or use clustering and nearest-neighbor
algorithms to find the related in the two trees.

In this section, we will describe each step in detail.

13.3.1 Step I: Map Both Trees Into Multidimensional Spaces

Multi-Dimensional Scaling (MDS) is a family of data analysis methods, all of which
portray the structure of the data in a spatial fashion [2–5]. MDS is used to discover the
underlying spatial structure of a set of data items from the distance information among
them. We employ MDS to map two trees T 1 and T 2 into two private k-dimensional
spaces S1 and S2, respectively.

MDS works as follows: given as inputs (1) a set of N objects, (2) a matrix of
size N × N containing pairwise distance values, and (3) the desired dimensionality
k, MDS tries to map each object into a point in the k-dimensional space Figure 13.3.
The criterion for the mapping is to minimize a stress value defined as

stress =
√√√√∑

i, j

(d ′
i, j − di, j)2∑

i, j d2
i, j

where dij is the actual distance between two nodes vi and v j and d ′
ij is the distance

between the corresponding points pi and p j in the k-dimensional space. If for all such
pairs, dij is equal to d ′

ij, then the overall stress would be 0, that is, minimum. MDS
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starts with some, possibly random, initial configuration of points in the desired space.
It then applies some steepest descent algorithm, which modifies the locations of the
points in the space iteratively, to minimize the stress. Steepest descent algorithms, at
each iteration, identify a point location modification that will give the largest reduction
in stress, and move the point in space accordingly.

In general, the more dimensions (i.e., larger k) is used, the better is the final fit that
can be achieved. Since multidimensional index structures do not work well at high
number of dimensions, it is important to keep the dimensionality as low as possible.
One method to select the appropriate value of k is known as the scree test where stress
is plotted against the dimensionality, and the point in the plot where the stress stops
substantially reducing is selected.

MDS places objects in the space based on their distances: objects that are closer
in the original distance measure are mapped closer to each other in the k-dimensional
space; those that have large distance values are mapped away from each other. There-
fore, in order to be able to use MDS to map a given tree into a k-dimensional space, we
need a distance function between the nodes of the tree. The distance function should
capture the structural relationships of the nodes in the tree. One way to achieve this
is to define the distance of a pair of nodes in a given tree as the number of edges
between them. In tree-structured data, for example, in a namespace, similar or related
nodes are closer to each other and have a fewer number of edges between them than
the dissimilar nodes. Other methods [28–31], which consider the depth of the nodes
in the tree or the density of the tree neighborhoods from which the pair of nodes are
taken, can also be applied to define a distance measure.

13.3.2 Step II: Compute Transformations to Align the Common Nodes
of the Two Trees in a Shared Space

In the previous step, the two trees are mapped to their own private k-dimensional
spaces. In this step, we align these spaces such that related nodes are colocated in the
new shared space. The information available to us for the alignment process is the
common nodes, known to denote similar concepts.

Once both trees are mapped onto their private k-dimensional spaces, we need
to relate the common nodes of the two trees. To achieve this, we need to identify
transformations required to map the common nodes from both trees to each other as
close as possible in the shared space. In order to match the common nodes, we use
the Procrustes alignment algorithm [62–64].

13.3.2.1 Using Procrustes for 1-to-1, Nonfuzzy Correspondences

Given two sets of points, the Procrustes algorithm uses linear transformations to
map one set of points onto the other set of points. Procrustes has been applied in
various diverse domains including psychology [63] and photogrammetry [6], where
alignment of related but different data sets are required. The orthogonal Procrustes
problem [62] aims finding an orthogonal transformation of a given matrix into another
one in a way to minimize the sum of squares of the residual matrix. Given matrices A
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and B, both of which are n × k, the solution to the orthogonal Procrustes problem is
an orthogonal transformation T , such that the sum of squares of the residual matrix
E = AT − B is minimized. In other words, given the k × k square matrix S = ETE
(note that MT denotes the transpose of matrix M)

trace(S) =
k∑

i=1

sii =
n∑

i=1

k∑
j=1

e2
ij is minimized.

The extended Procrustes algorithm builds on this by flexibly redefining the resid-
ual matrix as E = cAT + [11 . . . 1]TtT − B, where c is a scale factor, T is a k × k
orthogonal transformation matrix, and t is a k × 1 translation vector [65]. The general
Procrustes problem [63] further extends these by aiming to finding a least-squares
correspondence (with translation, orthogonal transformation, and scaling) between
more than two matrices.

Note that the orthogonal or the extended Procrustes algorithms above can be used
for aligning two k-dimensional spaces given a set of common points in each space. In
our case, the inputs to the algorithm are the common of nodes of two trees, T 1 and T 2,
mapped to their private k-dimensional spaces. Therefore, orthogonal or the extended
Procrustes algorithms may be applicable when T 1 and T 2 are tree structures represent
metadata, such as schemas, where the mapping of the common nodes is naturally 1-to-
1 and binary. However, when the two input trees being compared are media trees (such
as MPEG7 [9] or X3D [10]), two complications arise. First, the mapping between the
nodes may be many-to-many; that is, a given node may correspond to multiple nodes
in the other tree. Second, the correspondence between the object nodes may be fuzzy.
Therefore, in this second step of the algorithm, where we identify transformations
required to align the two input spaces such that the common nodes of the two trees
are as close to each other, we need to consider the many-to-many and fuzzy nature of
the common nodes.

One intuitive solution to this problem is to eliminate the many-to-many and fuzzy
nature of the mappings by (1) not considering the mappings below a certain quality of
matchs; (2) for each node in one of the trees, selecting the best mapping node as the
corresponding peer; and (3) eliminating the rest of the low ranking mappings from fur-
ther consideration. Although simple, this approach would result in loss of information
and errors in mapping. An alternative approach is to use, instead of orthogonal or the
extended Procrustes, an alignment algorithm that takes the many-to-many and fuzzy
nature of the mappings while identifying the appropriate transformations to map one
set of points on the other set of points. In this chapter, we focus on this second approach.

13.3.2.2 Weighted Procrustes for Dealing with Fuzzy Correspondences

Weighted Extended Orthogonal Procrustes [7] is similar to Extended Orthogonal
Procrustes in that it uses an orthogonal transformation, scaling, and translation to
map points in one space onto the points in the other. However, unless the original
algorithm, it introduces weights between the points in the two space. Given two
n × k matrices A and B, while the Extended Orthogonal Procrustes minimizes the
trace of the term ETE , where E = cAT + [11 . . . 1]TtT − B, the Weighted Extended
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Orthogonal Procrustes minimizes the trace of the term Sw = ETW E , where W is an
n × n weight matrix: i.e.,

trace(Sw) =
k∑

i=1

swi i =
n∑

i=1

n∑
h=1

k∑
j=1

wiheijeh j

is minimum. Note that if the weight matrix, W , is such that ∀i wi i = 1 and ∀h∀i �=
h wih = 0 (i.e., if the mapping is one-to-one and nonfuzzy); then, this is equivalent
to the nonweighted Extended Orthogonal Procrustes mapping. On the other hand,
when ∀i wi i ∈ [0, 1] and ∀h∀i �= h wih = 0, then we get

trace(Sw) =
k∑

i=1

swi i =
n∑

i=1

k∑
j=1

wi i e
2
ij

In other words, the mapping errors are weighted in the process. Consequently, those
points which have large weights (close to 1.0) will likely to have smaller mapping
errors than those points which have lower weights (close to 0.0).

Let us assume that we are given the mapping function, μ, between the nodes of the
two input trees, T 1 and T 2; let us further assume μ(vi, v j ) ∈ [0, 1] and μ is 1-to-1.
Then, μ can be used to construct a weight matrix, W , such that ∀i wi i ∈ [0, 1] and
∀h∀i �= h wih = 0. This weight matrix can then be used to align the matrices A and
B, corresponding to the trees T 1 and T 2, using the weighted Extended Orthogonal
Procrustes technique.

13.3.2.3 Weighted Procrustes for Dealing with
Many-to-Many Correspondences

Procrustes assumes that there is a 1-to-1 correspondence between the points in the
two k-dimensional spaces. Therefore, when the known correspondence between the
nodes of the two trees, T 1 and T 2, is also 1-to-1, the application of Procrustes for
alignment of the two trees is natural.

However, when the known correspondence between the nodes of the two trees is
not 1-to-1 but many-to-many, we cannot directly apply Procrustes; we need a different
approach to alignment. In the section, we discuss two possible alternative approaches,
depicted in Figure 13.4:

� Evaluate each possible 1-to-1 combination independently and choose the best map-
ping: Let us assume that m points in the first space correspond to m points in the
second space. This, for instance, would occur if m objects in one tree are similar to
m objects in the other. One way to find a suitable mapping in this case is to
1. enumerate all possible 1-to-1 mappings,
2. compute the trace for each Procrustes trace for each combination, and
3. pick the overall smallest one as the best transformation (Figure 13.4(b)).
Note that there would be m! different 1-to-1 mapping combinations to consider.
Therefore, this approach can have a significantly large cost, especially if the number,
m, of related points (or nodes in the tree) is large.
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Fig. 13.4. Handling many-to-many node correspondences: (a) Many-to-many correspondence

between the nodes in two spaces; (b) evaluating each alternative 1-to-1 mapping to choose

the one with the best match; and (c) virtual point-based transformation from many-to-many to

1-to-1 correspondence.

� Create virtual points, each corresponding to a single alignment alternative: Let us
assume that a single point, ag , in the first space, A, is known to correspond to m
points in the second space, B. To accommodate the multiple alternative mappings
of ag , we generate m virtual points, ag[1], . . . , ag[m], in the first space (in lieu of
ag) and m corresponding virtual points, bg[1], . . . , bg[m], in the second space for
each ag[i]. After this transformation, there is a 1-to-1 mapping between the virtual
points created. Thus, the W matrix becomes larger, but it is still diagonal and we
can minimize

trace(Sw) =
∑

i∈{1,...,k}−{g}

k∑
j=1

wi i e
2
ij + 1

m

m∑
i=1

wgg[i]egg[i]2

where wgg[i] is the degree similarity between ag and its i th alternative mapping
and egg[i] is the alignment error between them.
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Fig. 13.5. A possible alignment error due to the virtual point-based handling of many-to-many

node correspondence: instead of being aligned to one of the two possible candidates, a1 may be

mapped to a space between the two candidate nodes to minimize the total error; consequently,

a1 may be far from both of the candidate nodes.

It is easy to expand this to the cases where there are more points in the first
space mapped to multiple points in the second space. Figure 13.4(c), where all
three points in the first space are mapped to all three points in the second space
(through virtual points), illustrates this. The virtual point-based approach requires
extending the matrices such that there exists one row for each alternative mapping.
Consequently, if there are many-to-many mappings, the cost of this approach is a
quadratic increase in the number of points that need to be considered.

The virtual point-based approach is significantly cheaper than the enumeration ap-
proach. However, since each 1-to-1 mapping is not explicitly considered, the final
transformation does not provide a discreet mapping, but a weighted mapping which
can introduce errors as shown in Figure 13.5: If, in this figure, a1 was mapped to
b1 (or b2), the total error would be |b1 − b2|2; however, mapping to a point in the

middle of b1 and b2 gives a total error of ( |b1−b2|
2

)2 + ( |b2−b1|
2

)2 = |b1−b2|2
2

, which is
less than |b1 − b2|2.

In fact, this problem exists even when there are more than one points in the many-
to-many correspondence cluster. Figure 13.6(a) shows a scenario where there is a
2-to-2 correspondence and Figure 13.6(b) shows a desirable, distance preserving,
alignment. Note that the total error for this desirable solution is 2 × |b1 − b2|2, as
two correspondences are not satisfied (shown in dotted arrows in Figure 13.6(b)).
On the other hand, since Procrustes allows scaling during the alignment, it can in-
stead lead to the configuration in Figure 13.6(c), where the distance between the two
nodes, a1 and a2, is scaled down to almost zero and both a1 and a2 are mapped
to a region in the middle of b1 and b2. The total error in this configuration is
2 × ( |b1−b2|

2
)2 + ( |b2−b1|

2
)2 = |b1 − b2|, which is less than the error in the desired

alignment of Figure 13.6(b). Thus, Procrustes will choose this undesirable mapping.
We call this overeager scaling.

Note that this misalignment problem is likely to be less sever when there are multi-
ple clusters of many-to-many correspondence of nodes. In general, it is not likely that
the same erroneous center point will be suitable for all clusters (Figure 13.7). Since a
single scaling and transformation cannot map all of the many-to-many correspondence
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Fig. 13.6. Alignments errors are possible even when there are multiple candidate nodes in each

space: (a) there is a 2-to-2 alignment problem; (b) the desired alignment, where one node from

each space is mapped to one node from the other, while maintaining the distance relationships

in the original space; (c) a potential misalignment due to overeager scaling, in this arrangement,

the total mean square error may be smaller than (b).

clusters to their erroneous, but trace-minimizing, centers, overeager scaling is not as
likely to occur. When they occur, however, it is possible to recognize such errors by
studying the scaling factor chosen by Procrustes. If the scaling factor is smaller than
expected, then it is likely that the Procrustes algorithm minimized the overall error
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Fig. 13.7. Misalignment is not likely to occur when there are multiple clusters of many-to-

many correspondences: (a) a scenario where there are two such clusters, (b) misalignment

configuration (each cluster is mapped to its own center after scaling), and (c) such overeager

scaling-based misalignment is not likely to occur when there are multiple clusters; after scaling

(unless the cluster centers overlap), it is not possible that the nodes of both clusters will be

mapped to their own cluster centers.
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rate by mapping clusters to their centers. If that is the case, we can correct the error,
by fixing the scaling factor c in the Procrustes algorithm. Procrustes will need to find
a transformation and translation using the scaling factor fixed in advance. In general,
the scale of the data can be compared by computing the spread of the data points in
the two spaces (especially those that are known to map to each other) and picking a
scaling factor that will equalize the spreads of the points in their spaces. This is not
a loss of generalization as the initial MDS algorithm that maps the tree nodes to the
k-dimensional spaces will try to protect the original distances between the nodes and
those will not introduce any scaling variances in the different dimensions of these
spaces.

13.3.3 Step III: Use the Identified Transformations to Position the Uncommon
Nodes in the Shared Space

The previous step returns the transformations (rotation, scaling, and translation) re-
quired to modify the given spaces such that the common nodes of both trees are
aligned with each other as much as possible. Using the transformations identified in
the previous step, the uncommon nodes in two trees are mapped into the space in
terms of their distances from the common nodes in respective trees. The uncommon
nodes of both trees that are approximately at the same distance or at the same distance
range from the common nodes in their respective trees are likely to be similar and
will be mapped close to each other in the shared k-dimensional space.

13.3.4 Step IV: Relate the Nodes from the Two Trees in the Shared Space

At this point we have two trees whose nodes are mapped onto a shared k-dimensional
space such that the common nodes are close to each other in the space. Furthermore,
more similar nodes are more likely to be mapped closer to each other, whenever there
are trade-offs. In other words, the point distances in the common space correspond
to the distance between the objects. Thus, we can compute the similarity between
the objects using the distances in this space or use clustering and nearest-neighbor
approaches to identify related uncommon nodes.

13.4 Experimental Evaluation

In this section, we provide an experimental evaluation of the proposed approach for
mining mappings between the nodes of hierarchical data. In order to properly evalu-
ate the proposed approach and to observe the effects of various data parameters (like
the number of nodes in the two trees and their degrees or fanouts), we need a large
number of trees. Furthermore, we need to be able to vary these parameters in a con-
trolled manner to observe the performance under different conditions. Therefore, we
systematically generated a large number of tree-structured data (i.e., the ground truth)
with varying parameters and use these trees in our initial experimental evaluation.
After observing the effectiveness of our algorithm using this approach, we also used
real collections of data to verify our results.
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Fig. 13.8. Tree differentiation process for ground truth generation (the ellipses marked as

“Dist.” stand for the distorted regions of the differentiated tree): (a) An original tree (T 1);

(b) a differentiated tree (T 2); and (c) similarity annotations.

13.4.1 Synthetic and Real Data

The challenge addressed in this chapter is to relate nodes of two trees based on the
information inherent in their structures. In general, trees can structurally differ from
each other in terms of the number and density of nodes, node labels, and the degrees of
similarity of the nodes in the trees. Therefore, to systematically generate two related
but different trees, we

1. first randomly generate an original tree (Figure 13.8 (a)); and
2. then distort (i.e., differentiated from the original) a copy of this tree by

� relabeling existing nodes,
� deleting nodes from,
� adding new nodes to the original tree, and
� varying the degrees of matches between the nodes
to generate a different tree (Figure 13.8 (b)).

The original and the differentiated trees act as two similar, but not identical trees for
our evaluations.

13.4.1.1 Synthetic Tree Generation for Controlled Experiments

The trees for the controlled experiments are created on the basis of two parameters:
the number of nodes and the maximum fanout (degree). For the experiments reported
in this chapter, we generated original trees with the configuration shown in Table 13.1.
Each node of a given synthetic tree has a different label as shown in Figure 13.8(a). For

Table 13.1. Parameters for tree generation

Number of nodes in the tree 25 and 200

Fanout (degree) 2 and 8
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the experiments we are reporting here, we created multiple trees for each combination
of tree parameters and we are reporting the average results.

13.4.1.2 Tree Differentiation Process

Given a synthetic tree, we applied various differentiation strategies to observe the
behavior of the algorithm under different matching scenarios:

� Exp. Synth1: The first set of experiments involved structurally identical trees
with mismatching labels. For these experiments, for each original synthetic tree,
we generated two classes of differentiated trees, with 5% and 65% renaming,
respectively.

� Exp. Synth2: To observe the impact of structural differences, we used combinations
of addition, deletion, and rename operations to structurally differentiate trees. To
each input tree, we applied two different levels of structural distortion:
–15% (5% addition + 5% deletion + 5% rename),
–45% (15% addition + 15% deletion + 15% rename).

� To observe the impact of imperfect matching of nodes, we modified the degrees
of matching between the nodes in the original tree and the differentiated tree
(Figure 13.8 (c)):
–Exp. Synth3: To observe the impact of imperfect matching between the corre-

sponding nodes, we downgraded the matching degree between these nodes as
follows:
� 40% have 1.0 ≥ match ≥ 0.8,
� 30% have 0.8 > match ≥ 0.6,
� 15% have 0.6 > match ≥ 0.4,
� 8% have 0.4 > match ≥ 0.2, and
� 7% have 0.2 > match ≥ 0.0.

–Exp. Synth4: To observe the impact of many-to-many, but fuzzy, correspondences
between the nodes of the two trees, we introduced fuzzy matches between the
noncorresponding nodes. We experimented with two different distributions:

Synth4-low:
� 90% of the nodes do not match any other nodes except the one they correspond

to,
� the remaining 10% of the nodes match

� 25% of the others with 0 < match ≤ 0.2,
� 15% with 0.2 < match ≤ 0.4,
� 10% with 0.4 < match ≤ 0.6,
� 6% with 0.6 < match ≤ 0.8, and
� 4% with 0.9 < match ≤ 1.0.

Synth4-high:
� 10% of the nodes do not match any other nodes except the one they correspond

to,
� the remaining 90% of the nodes match other nodes with the same distribution as

above.
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13.4.1.3 Experiments with Real Trees

In addition to synthetic trees, we also ran our experiments with two sets of real data:

� Exp. Real1: For experiments with nonfuzzy and 1-to-1 matching, we used the
Treebank data set [66], which has a deep recursive structure (whereas our synthetic
trees were mostly balanced). The data nodes themselves are encrypted; therefore,
content-based similarity information is not available.

� Exp. Real2: For experiments with fuzzy and many-to-many matching, we used data
collected from the CNN Web site [67]. For this purpose, we took two snapshots of
the cnn.com site, 12 hours apart. Two news categories (and their subcategories) are
selected from each snapshot. Top-two news stories are stored for each subcategory
to obtain a total of 32 news entries for each snapshot. The news items are first
compared in terms of their key word similarities. The highly similar node pairs
are then used as common nodes for mapping the rest of them using the structural
information inherent in the Web site.

13.4.2 Evaluation Strategy

In our implementation, we use MDS and Procrustes transformations to map the in-
put tree nodes (from original and differentiated trees) into a shared multidimensional
space. Then, at the final phase of the algorithm, we used a k-means [68] based cluster-
ing technique to retrieve the related nodes from the two trees. We used the nodes of the
original tree as the centroid for the k-means clustering and we used the distance in the
Euclidean space to perform clustering. As a result, returned clusters contain a node
from the original tree as the centroid and one or more nodes from the differentiated
tree as the potential matches.

In the reported experiment results, the term number of nodes denotes the number
of nodes in the original tree. The total number of points in the space is the number of
nodes in the original tree plus the number of nodes in the differentiated tree.

When a given query node of a given tree does not map to the corresponding node
of the other tree, then the mapping is said to be an erroneous mapping. The types of
erroneous mappings include

� mapping to a sibling of the correct node,
� mapping to the parent node of the correct node (when the correct node does not

have a sibling),
� mapping to the parent node of the correct node (when the correct node has at least

one sibling),
� mapping to the sibling of the parent,
� mapping to a distant node, and
� no mapping (this is also an erroneous mapping case).

Each such erroneous mapping corresponds to a different degree of structural error.
To account for the different degrees of structural errors, we defined a structurally



P1: OTE/SPH P2: OTE

SVNY295-Petrushin September 18, 2006 22:0
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weighted precision as

m1 + m2 + · · · + mk

k

where k is the number of nodes returned and mi is the degree of matching of node vi

in the result:

mi = 1

1 + strerri
.

Note that a node with a lower degree of structural error (strerr) contributes more to the
precision. The degree of error is defined as follows for different types of erroneous
mappings:

� mapping to a sibling of vj [strerr = 1]
� mapping to the parent node of vj (vj does not have a sibling) [strerr = 1]
� mapping to the parent node of vj (the vj has at least one sibling) [strerr = 2]
� mapping to the sibling of the parent [strerr = 3], and
� mapping to a distant node from vj [strerr = 4].

If the algorithm does not return any matches, the corresponding structurally weighted
precision is defined as 0.

In the following subsections, we present two groups of experiments. In Subsec-
tions 4.3–4.6, we discuss experiment results of 1-to-1, nonfuzzy mappings; and in
Subsection 4.7–4.10, we report results of fuzzy and/or many-to-many mappings.

13.4.3 Experiment Synth1–Label Differences

First set of experiments shows the performance of the proposed algorithm when the
structures of the trees that are being compared are identical, but some of the nodes are
labeled differently. This data set assumes that there are no known similarity matches
between the elements. Figure 13.9 provides the following observations that are further
discussed in subsections below.

� As the differentiation rate increases the error rate also increases. The error pattern
observed is similar in case of trees with a total number of nodes 25 and 200.

� As the fanout increases, the error also increases. For trees with fanout = 2, no errors
are observed.

� The structurally weighted precision is close to perfect (1.0) for low label differences.
For heavy (65%) levels of label differentiation, the weighted precision can drop
slightly for trees with large fanouts.

13.4.3.1 The Effect of the Amount of Label Mismatches

The higher the number of common nodes between the two trees, the easier is to
discover structural similarities between the two trees. An increase in the rate of dif-
ferentiation reduces the number of common nodes between the two trees; as a result,
the error rate increases.
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Fig. 13.9. Structurally weighted precision for label differentiated trees.

13.4.3.2 The Effect of Fanout

For trees with maximum fanout = 2, when only one of the two siblings is relabeled,
there is still a high probability of correct mapping of the mislabeled node. However,
when the fanout is higher, the probability that siblings (especially those leaf siblings
that are structurally identical to each other) will be erroneously mapped to each other
increases. Hence, as the fanout increases, the rate of correct mapping decreases.
We observed that, in most erroneous cases, the label-differentiated nodes are simply
mapped to a sibling of the correct node.

13.4.3.3 Structurally Weighted Precision

The structurally weighted precision is close to perfect (1.0) for low degrees of renam-
ing. In the case of heavy renaming (65%), on the other hand, the weighted precision
drops as the fanout increases. However, the degree of drop (around 15%) in the pre-
cision is less significant than the degree of difference (65%) between the trees, which
means that even when the algorithm cannot find a perfect match, it returns a node
close to what was expected. More importantly, the results show that as the number of
nodes in the tree increases, the weighted precision significantly improves. This shows
that, as the number of available nodes increases, distance-based mapping of nodes
into the search space becomes more robust and this leads into better matches.

13.4.4 Experiment Synth2-Structural Differences

Figure 13.10 provides the following observations. They are further elaborated in
subsections below.
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� As the rate of structural differentiation increases, the error also increases.
� Unlike the experiments with only label-differentiated trees, when the fanout low, the

error percentage is the highest. The error percent drops sharply for higher fanouts.

13.4.4.1 The Effect of Structural Difference

In this experiment, we used a combination of addition, deletion, and rename operations
to generate structural differentiation between trees. As expected, the higher the rate of
differentiation, the lower the number of common nodes between the two trees; hence,
the greater the probability of unsuccessful mappings.

13.4.4.2 The Effect of Fanout

In trees with lower fanouts, each node is close to only a few nodes. Therefore, each of
these nearby nodes is highly important in achieving a correct mapping. If any of these
nodes is deleted, then we lose important distance information. Hence, it becomes
difficult to achieve good mappings.

If the tree has a high fanout, each node has a large number of siblings and nearby
nodes. Even if one of these nodes is deleted, there are many other nearby nodes to
help with the mapping. Although there is an increased probability with which the
given node wrongly maps to a sibling, there is still a relatively high probability of
correct mapping.

13.4.4.3 Structurally Weighted Precision

Figure 13.10 shows the structurally weighted precision obtained by the proposed
algorithm when trees are structurally differentiated. From this figure, it is clear that
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the result precision is high for large fanouts. An increase in the number of nodes in
the tree, on the other hand, has different effects, depending on the fanout of the nodes.
If the fanout is low (say 2), a larger tree actually means a bigger drop in precision:

� In label-differentiated trees, a smaller fanout means smaller chance of mapping a
node to the sibling of the correct node. Hence, a smaller fanout translates into a
smaller error rate.

� In structurally differentiated trees, on the other hand, when the fanout is very low,
the overall tree structure could be drastically changed by a small amount of node
deletions and additions. Since the proposed algorithm is based on the structure of
the tree, the resulting error rate is considerably high in cases with a small fanout.
For large fanouts, however, too many renamings can still be highly detrimental.

13.4.5 Experiment Real1: Treebank Collection

In addition to the synthetic trees we used in the first two sets of experiments, we
also run experiments with the Treebank data set available at [66]. The deep recursive
structure of this data set (maximum depth 36, average depth, 7.87), in contrast to
the mostly balanced structures we used in experiments with synthetic trees provides
opportunities for additional observations. For the experiments with real-world data, in
order to observe the effects of differentiation, we clustered the trees in the collection
based on their numbers of nodes. Therefore, for instance, if we wanted to observe
the precision for trees with 100 nodes, from the collection we selected trees that have
around 100 nodes. Then, we applied various types of differentiations on these trees.

13.4.5.1 Effects of Label Differences on Treebank Data

Figure 13.11(a) shows the weighted precisions obtained by the proposed algorithm
in experiments with Treebank data (with only node relabelings). The results show
that the proposed algorithm is very robust with respect to labeling differences in real
data. Even when 65% of the nodes are relabeled, the approach is able to identify the
correct node with up to 90% precision. When we compare the results presented in
this figure with the results obtained using synthetic trees (Figure 13.9), we see that
for large fanouts, the precision the algorithm provides on real data is significantly
higher (up to 90% precision even with 65% relabelings) than the precision obtained
on synthetic tree sets (60% precision with 65% relabelings).

We observed that for trees with 200 nodes around 70% of the errors were due to
the nodes that did not match any other node. This is in contrast with the results with
synthetic data where the no-mapping errors were close to 0. Nevertheless, the overall
precision for the Treebank data is higher than the case for synthetic data; i.e., when
there were nodes that are returned in the result set, the structural errors for these nodes
were closer to 0.

13.4.5.2 Effects of Structural Differences on Treebank Data

Figure 13.11(b) shows the weighted precisions obtained by the proposed algorithm in
experiments with Treebank data (all types of differentiations, including additions and
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Fig. 13.11. Structurally weighted precision in experiments with Treebank data; (a) label- and

(b) structural-differentiations.

deletions of nodes, are allowed). From this figure, it is clear that the precision pattern
of the proposed algorithm using real data matches the precision pattern using the
synthetic tree sets in the previous experiments (Figures 13.9 and 13.10). As expected,
because of structural differentiations, the weighted precisions are lower than the case
for only relabelings, but they are above 80% even with 45% structural differences.

13.4.6 Execution Time

Here we report the execution times required by the proposed algorithm under differ-
ent matching scenarios for the Treebank data. Results are presented in Tables 13.2
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Table 13.2. Execution time for matching under label differentiation

Rate of differentiation 25 nodes 200 nodes

25% 0.079 s 2.57 s

65% 0.080 s 3.10 s

through 13.5. Experiments were performed on a PC with Pentium M CPU 1400 MHz
and 512 MB main memory running Windows XP. The transformations were imple-
mented using MatLab 6.5. Each value presented is computed as the average of results
from twenty runs.

Table 13.2 presents the case where the structures of the trees that are being matched
are similar, but a certain portion of the nodes are relabeled. As shown in the table,
the execution time increases with both the number of nodes in the trees that are being
matched and the amount of difference that has to be accounted for. Nevertheless, the
algorithm scales well against the amount of label differentiations, while the required
time is quadratic in the number of nodes in the trees that are being compared. Thus,
the number of nodes is a more important factor in total execution time than the amount
of difference. Table 13.3 presents the time needed for matching when the trees are
also structurally differentiated. Again, the execution time needed is similar to (only
very slightly higher than) the case with only label differences.

Table 13.6 shows how the execution time is split among the four individual steps
(mapping trees onto a space using MDS, finding transformations using Procrustes,
mapping uncommon nodes using these transformations, and finding the appropriate
matchings using k-means clustering) of the algorithm. As shown in this table, 80%–
85% of the time is spent on the final (clustering) step of the algorithm, while the first
(MDS) step of the algorithm takes 10%–20% of the total time. As seen prominently for
the 200 nodes case, when the amount of differences increases, the major contributor to
the corresponding increase in the execution time is the clustering step of the algorithm.
This is expected as, because of differences between the trees, the precision drops; this
causes more matches to be found and returned, slightly increasing the execution time.
On the other hand, when we compare the two tables for 25 nodes and 200 nodes,
respectively, we see that while the execution times for both first and last steps of the
algorithm increase in absolute terms, the major contributor to the large increase in
the overall execution time is the first step where MDS is used for mapping trees onto
multidimensional spaces.

Finally, Table 13.5 shows the effect of the tree fanout change on the execution
time of the algorithm. Here we are reporting the results for the set of experiments
with trees of 200 nodes and an overall 30% structural differentiation rate. Results
for other scenarios are similar. The fanout affects the execution time, especially of
the clustering phase, significantly. Given a fixed number of nodes, when the fanout

Table 13.3. Execution time for matching under structural differentiation

Rate of differentiation 25 nodes 200 nodes

(5+5+5) 15% 0.078 s 2.66 s

(15+15+15) 45% 0.083 s 3.26 s
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Table 13.4. Distribution of the execution time among the individual steps

Diff. Total time MDS Proc. Trans. Cluster

25 nodes
15% 0.078 s 10.9% 2.6% 0.6% 85.9%

45% 0.083 s 10.8% 2.4% 0.6% 86.2%

200 nodes
15% 2.04 s 22.2% 1.1% 0.1% 76.6%

45% 2.63 s 18.3% 1.2% 0.0% 80.5%

is large, the distance between the nodes is smaller (more nodes are siblings or close
relatives of each other); this leads to more work in the clustering and cluster-based
retrieval phase of the algorithm, thus increasing the total execution time significantly.

13.4.7 Synth3: When the Corresponding Nodes in the Two
Trees Match Imperfectly

Figure 13.12 shows the results for the experiments where the degree of matches be-
tween the corresponding nodes in the input trees is less than perfect. If we compare the
label- and structure-differentiated experiment results in Figure 13.12 to Figures 13.9
and 13.10 respectively, we see that the performance of the proposed algorithm is
largely unaffected by the loss of precision in the matching of corresponding nodes.
In other words, weighted Procrustes is capable of aligning the corresponding nodes
as long as the correspondence between the nodes in the input trees is one-to-one.

13.4.8 Synth4: Many-to-Many Correspondences Between Nodes

Figures 13.13 and 13.14 show results for the experiments where nodes of input trees
have many-to-many correspondences.

The first observation is that, when Weighted Procrustes is applied without taking
care of the scale of the distances, the precision drops significantly (Figure 13.13(a)).
As discussed in Section 13.3.2, when no constraints are imposed on the scaling
transformations, weighted Procrustes can overeagerly scale down the data to bring
them closer to the cluster centers in the new space. In fact, even though the distances
of the nodes in the input trees in our experiments are not of different scale, when the
amount of many-to-many mappings is high, we observed that Procrustes can return
scaling factors as low as 0.2. Once again, as expected, this problem is especially
prominent when the fanout (i.e., the number of nearby nodes, such as siblings) is low.

When the scale of the data is properly fixed in advance, however, the problem does
not occur. Figure 13.13(b) shows the precision for label-differentiated data with 10%

Table 13.5. The effect of the fanout on the execution time of the algorithm

Fanout MDS Proc. Trans. Cluster Total

2 0.62 s 0.01 s 0.001 s 0.61 s 1.24 s

8 0.59 s 0.09 s 0.003 s 3.79 s 4.47 s
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Fig. 13.12. Structurally weighted precision in experiments with fuzzy matches between given

nodes: (a) label differentiation and (b) structural differentiation.

of the nodes having many-to-many mappings. In this figure, Procrustes is constrained
such that data scaling is fixed at 1.0 (i.e., data are not scaled). When we compare this
with Figure 13.9, we see that the matching performance is similar to the case with
nonfuzzy, one-to-one trees. In fact, even when the ratio of the nodes with many-to-
many mappings is heavily increased to 90%, the overall performance degrades only
slightly (Figure 13.13(c)).

Finally, Figure 13.14 shows the result when the input trees are structurally dif-
ferent, as well as nodes have fuzzy and many-to-many matches. When we compare
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284 K. Selçuk Candan et al.

2
8

2

8

5%

65%
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

(25 nodes)
(200 nodes)

Rename
distortion

Structurally weighted precision vs. fanout
 (for fuzzy data with 10% many-to-many corresp.) 

-scaling allowed-

5%

65%

2
8

2

8

5%

65%
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

(25 nodes) (200
 
nodes)

Rename
distortion

Structurally weighted precision vs. fanout
 (for fuzzy data with 10% many-to-many corresp.)

-no scaling-

5%

65%

2
8

2
8

5%

65%
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

(25 nodes) (200 nodes)

Rename
distortion

Structurally weighted precision vs. fanout
 (for fuzzy data with 90% many-to-many corresp.)

-no scaling-

5%
65%

(a)

(b)

(c)
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Table 13.6. Distribution of the execution time among the individual steps of the

algorithm, when 10% of the nodes in the trees have many-to-many mappings

Diff. Total time MDS Proc. Trans. Cluster

25 Nodes

45% 0.13 s 5.33% 59.40% 0.08% 35.19%

200 Nodes

45% 6.74 s 6.16% 76.41% 0.01% 17.42%

Figure 13.14(a) with Figure 13.10, we see that the matching performance is similar to
nonfuzzy, one-to-one trees, when the ratio of nodes with many-to-many mappings is
low. On the other hand, when both the rate (65%) of structural difference and the ratio
(90%) of nodes with many-to-many mappings are high, the matching performance is
expectedly low as there is little structural information to help choose among various
alternative mappings (Figure 13.14(c)).

13.4.9 Execution Time with Fuzzy, Many-to-Many Mappings

Table 13.6 shows the execution times when 10% of the nodes have many-to-many
mappings. As discussed in Section 13.3.3, the complexity of the Procrustes map-
ping stage of the algorithm is quadratic in the number of nodes with many-to-many
mappings. Indeed, as the number of nodes increase, the total execution time and the
share of the Procrustes algorithms’ execution time both increase. An 8- (= 200

25
) fold

increase in the number of nodes results in a 67-(= 76.41×6.74
59.40×0.13

) fold increase in the

execution of the Procrustes phase; that is, very close to 82 = 64, as we expect.

13.4.10 Real2: Experiments with the CNN Data

Finally, we ran experiments to observe the performance for a real CNN data set (with
many-to-many and fuzzy mappings). Here two snapshots from CNN Web site are
compared using two different ratios of known common nodes. When the ratio of
already known mappings is high (95%), the algorithm provides very high precision
(∼1.0). When only a small set (35%) of common nodes are available to support the
mapping, the precision obtained by the algorithm presented in this chapter was still
above 70%.

13.5 Conclusions

An automated multimodal media integration system requires mappings across data
and metadata. Therefore, a mapping mechanism is needed to mine and relate the
common and uncommon data and metadata components. In this chapter, we intro-
duced algorithms to automatically discover mappings in hierarchical media data,
metadata, and ontologies. The proposed algorithm uses the inherent structural infor-
mation to map semantically similar but syntactically different terms and components.
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We extensively evaluated the performance of the algorithm for various parameters
and showed that the algorithm is very effective in achieving high degrees of correct
matches.
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288 K. Selçuk Candan et al.

20. Mitra, P., Wiederhold, G., Jannink, J.: Semiautomatic integration of knowledge sources.

Proc. of Fusion ’99, Sunnyvale, USA, 1999.

21. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching, VLDB
Journal 10, pp. 334–350, 2001.

22. Miller, R.J., Haas, L., Hernandez, M.A.: Schema mapping as query discovery. Proc 26th
Int Conf OnVery Large Data Bases, pp. 77–88, 2000.

23. Mitra, P., Wiederhold, G., Kersten, M.: A graph oriented model for articulation of ontology

interdependencies. Proc Extending DataBase Technologies, LNCS, Vol. 1777, pp. 86–100,

2000.

24. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. Proc 27th
Int Conf On Very Large Data Bases, pp. 49–58, 2001.

25. Li, W.S., Candan, K.S., Vu, Q., Agrawal, D.: Query relaxation by structure and semantics

for retrieval of logical web documents. TKDE 14(4): 768–791, 2002.

26. Candan, K.S., Li, W.S.: Discovering web document associations for Web site summariza-

tion. DaWaK 152–161, 2001.

27. Candan, K.S., Li, W.S.: Using random walks for mining Web document associations.

PAKDD, pp. 294–305, 2000.

28. Resnik, P.: Using information content to evaluate semantic similarity in a taxanomy. IJCAI,
pp. 448–45, 1995.

29. Resnik, P.: Sematic similarity in a taxanomy: An information-based measure and its ap-

plication to problems of ambiguity in natural language. Journal of Artificial Intelligence
Research, 11, 95–130, 1999.

30. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric

on semantic nets. IEEE Transactions on Systems, Management, and Cybernetics, 19(1):

17–30, 1989.

31. Lee, J., Kim, M., Lee, Y.: Information retrieval based on conceptual distance in IS-A

hierarchies. Journal of Documentation, 49(2): 188–207, 1993.

32. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On supporting contain-

ment queries in relational database management, 2001.

33. Goldman, R., Widom, J.: Enabling Query Formulation and Optimization in Semistructured

Databases, pp. 436–445. VLDB, 1997.

34. Bremer, J., Gertz, M.: An efficient XML node identification and indexing scheme. VLDB,

2003.

35. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions. VLDB,

2001.

36. Wang, H., Park, S., Fan, W., Yu, P.: ViST: A dynamic index method for querying XML

data by TreeStructures. SIGMOD, 2003.

37. Rao, P., Moon, B.: PRIX: Indexing and Querying XML using prufer sequences. ICDE,

2004.

38. Milo, T., Suciu, D.: Index structures for path expressions. ICDT’99, pp. 277–295. ICDT,

1999.

39. Cooper, B.F., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon, M.: A Fast Index for

Semistructured Data. pp. 341–350. VLDB, 2001.

40. Zhang, K.: The editing distance between trees: Algorithms and applications. PhD thesis,

Courant Institute, Departement of Computer Science, 1989.

41. Wang, J., Zhang, K. Jeong, K., Shasha, D.: A System for Approximate Tree Matching.

IEEE TKDE. 559–571, 1994.

42. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and

related problems. SIAM J Comput 18:1245–1262, 1989.



P1: OTE/SPH P2: OTE

SVNY295-Petrushin September 18, 2006 22:0

13. Identifying Mappings in Hierarchical Media Data 289

43. Tai, K.C.: The tree-to-tree correction problem. J. ACM, 36, 422–433, 1979.

44. Zhang, K., Shasha, D.: Approximate Tree Pattern Matching. In Pattern Matching in Strings,

Trees, and Arrays. A. Apostolico and Z.Galil (eds.), Oxford University, Oxford, pp. 341–

371, 1997.

45. Zhang, K., Wang, J.T.L., Shasha, D.: On the editing distance between undirected acyclic

graphs. International Journal of Computer Science, 7(1), pp. 43–57, 1996.

46. Lu, S.Y.: A tree-to-tree distance and its application to cluster analysis. IEEE Trans. PAMI,
1, 219–224, 1979.

47. Bille, P.: A Tree Edit Distance, Alignment Distance and Inclusion. IT University of Copen-

hagen Technical Report Series, TR-2003-23, 2003.

48. Chawathe, S.: Comparing hierarchical data in external memory. In: Proceedings of the
Twenty-fifth International Conference on Very Large Data Bases, Edinburgh, Scotland,

UK, 1999.

49. Chawathe, S., Garcia-Molina, H.: Meaningful change detection in structured data. In:

Proceedings of the ACM SIGMOD International Conference on Management of Data,

pp. 26–37, Tucson, Arizona, 1997.

50. Schlieder, T.: ApproXQL: Design and implementation of an approximate pattern match-

ing language for XML. Technical Report B 01-02, Freie Universitat Berlin, May

2001.

51. Schlieder, T.: Schema-driven evaluation of approximate tree-pattern queries. In: Proc.
EDBT, pp. 514–532, Prague, Czech Republic, 2002.

52. Kailing, K., Kriegel, H.P., Schonauer, S., Seidl, T.: Efficient similarity search for hierar-

chical data in large databases. In: Proc. 9th Int. Conf. on Extending Database Technology,

pp. 676–693, Heraklion, Greece, 2004.

53. Papadopoulos, A.N., Manolopoulos, Y.: Structure-based Similarity Search With Graph

Histograms. In: Proceedings of the DEXA/IWOSS International Workshop on Similarity
Search, pages 174–178. IEEE Computer Society, 1999.

54. Lopresti, D., Wilfong, G.: Comparing Semi-structured documents via graph probing. In:

Proceedings of the Workshop on Multimedia Information Systems, pp. 41–50, November

2001.

55. Lopresti, D., Wilfong, G.: Applications of graph probing to Web document analysis. In: Pro-
ceedings of the International Workshop on Web Document Analysis, Seattle, US, September

2001.

56. Kriegel, H.P., Schonauer, S.: Similarity search in structured data. DAWAK 2003.

57. Fu, J.J.: Approximate pattern matching in directed graphs. Combinatorial Pattern Matching

(CPM’96), pp.373–383, 1996.

58. Selkow, S.: The Tree-to-Tree editing problem. Information Processing Letters, 6(6),

pp. 184–186, 1977.

59. Luccio, F., Pagli, L.: Approximate matching for two families of trees. Information and
Computation, 123(1), 111–120, 1995.

60. Farach, M., Thorup, M.: Sparse dynamic programming for evolutionary tree comparison.

SIAM Journal on Computing, 26(1):210–23, 1997.

61. Myers, E.: An O(ND) difference algorithms and its variations. Algorithmica, 1(2),

pp. 251–266, 1986.

62. Schoenemann, P.H.: A generalized solution of the orthogonal procrustes problem.

Psychometrika, 31(1), pp. 1–10, 1966.

63. Gower, J.: Generalized procrustes analysis. Psychometrika, 40:33–51, 1975.

64. Kendall, D.G.: Shape manifolds: Procrustean metrics and complex projective spaces. Bul-
letin of the London Mathematical Society, 16:81–121, 1984.



P1: OTE/SPH P2: OTE

SVNY295-Petrushin September 18, 2006 22:0
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14. A Novel Framework for Semantic
Image Classification and Benchmark Via
Salient Objects

Yuli Gao, Hangzai Luo, and Jianping Fan

Summary. Interpreting semantic image concepts via their dominant compounds is a promising

approach to achieve effective image retrieval via key words. In this chapter, a novel framework

is proposed by using the salient objects as the semantic building blocks for image concept

interpretation. This novel framework includes (a) using Support Vector Machine to achieve

automatic detection of the salient objects as our basic visual vocabulary; (b) using Gaussian

Mixture Model for semantic image concept interpretation by exploring the quantitative re-

lationship between the semantic image concepts and their dominant compounds, i.e., salient

objects. Our broad experiments on natural images have obtained significant improvements on

semantic image classification.

14.1 Introduction

As high-resolution digital camera becomes affordable and popular, high-quality dig-
ital images have exploded the Internet. With this exponential growth in online pub-
lishing of digital images, it is becoming more and more important to develop effective
image database indexing and retrieval at the semantic level [1].

There have been many published works on exploiting semantic meaning from
digital images. In general, the success of these existing content-based image re-
trieval (CBIR) systems depends on two interrelated issues: (1) The effectiveness
of the underlying image patterns that are selected for image content representa-
tion and feature extraction; (2) the accuracy of the underlying image classification
algorithms.

Three approaches have been widely used for image content representation:

(a) Scene-based approaches treat an entire image as the underlying image patterns
for feature extraction; thus, only the global visual properties are used for image
content representation [8–12]. A well-known example is the system developed
by Torralba and Oliva, which uses discriminant structural templates to represent
the global visual properties of natural scene images [10]. The major advantage
of the scene-based approach is that it avoids the generally hard problems of
image segmentation and object detection, and it captures the overall structure
of major elements in an image. However, these approaches may not work well

291
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for images composed of individual objects [2–4] that are identified by human
users to interpret the semantics of images.

(b) Region-based approaches take homogeneous image regions or connected image
regions with consistent color or texture (i.e., image blobs) as the underlying im-
age patterns for feature extraction [5–8]. For example, Carson et al. proposed
a blob-based framework [5], and the similarity between images are calculated
by the similarity of the blobs. Wang, Li, and Wiederhold have also developed
an integrated region matching technique for binary image classification [6]. One
common weakness of these region-based image classification techniques is that
homogeneous image regions may have little correspondence with the semantic
concepts—a big semantic gap for effective semantic image classification. In ad-
dition, these region-based approaches may suffer from overdetection of semantic
concepts [2, 14].

(c) Object-based approaches take semantic objects as the representative image pat-
terns for feature extraction [13–15]. The major problem for such approaches is
that automatic semantic object extraction is generally difficult because homoge-
neous image regions in color or texture do not correspond to the semantic objects
directly [2–4].

From these different approaches of image representation, we can see that image
semantics can be described and modeled at multiple levels—both at the content level
and at the concept level. Content-level description can be used to characterize images
with distinctive objects and concept-level description can be used to characterize
events revealed by the global structure of an image. Thus a good image classification
system should enable automatic annotation of both the dominant image components
and the relevant semantic concepts. However, few existing work has achieved such
multilevel annotation of images.

On the basis of this understanding, we propose a novel framework to achieve
automatic interpretation of semantic image concepts by using salient objects, the
basic unit of our visual representation vocabulary. And then we interpret the high-level
semantic concepts of an image via the joint distribution of its relevant salient objects.

This chapter is organized as follows: Section 2 presents our image content repre-
sentation framework by using salient objects; Section 3 introduces automatic detection
of salient objects via Support Vector Machine; Section 4 introduces a semantic image
concept interpretation framework using Gaussian Mixture Model; Section 5 shows
our broad experiments on natural images; and we conclude in Section 6.

14.2 Image Content Representation Via Salient Objects

As mentioned above, the quality of low-level visual features largely depends on the
underlying image patterns that are selected for image content representation and
feature extraction. As shown in Figure 14.1, semantics of natural images can be
identified by human users in two different ways: (a) through objects of interest such
as animals, sky, and water together with their background visual properties, one
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Fig. 14.1. Examples of natural images. Human beings interpret the semantics of images based

on different salient objects: (a) object of interest; (b) the global configuration of the scene.

recognizes certain activities being performed by the object; (b) through scenes with
no particular objects of focus, it unfolds a global configuration such as openness,
naturalness that is often related to certain events like sailing, skiing, and hiking.

The low-level visual features that are extracted by using entire images or homo-
geneous image regions do not have the ability to capture the objects of interest like
those in (a), because of the lack of correspondence between regions and semantic
objects. On the other hand, extracting the semantic object for global scenes like those
in (b) is not only very difficult but also ineffective because the entire image should be
appreciated as a whole. Therefore, there has been great interest in developing more
effective image content representation framework using middle-level understanding
of image contents, through which a higher level understanding of the image concept
can be achieved.

In order to obtain a middle-level understanding about image contents, we pro-
pose a novel semantic-sensitive image content representation framework by using the
salient objects. The salient objects are defined as the visually distinguishable image
compounds [14] or the global visual properties of whole images that can be identi-
fied by using the spectrum templates in the frequency domain [10]. For example, the
salient object “sky” is defined as the connected image regions with large sizes (i.e.,
dominant image regions) that are related to the human semantics “sky.” The salient
objects that are related to the global visual properties in the frequency domain can
be obtained easily by using wavelet transformation [10]. In the following discussion,
we will focus on modeling and detecting the salient objects that are related to the
visually distinguishable image compounds. The basic vocabulary structure of such
salient objects is modeled by using the taxonomy of image compounds of natural
scenes as shown in Figure 14.2.

Since the concept-sensitive salient objects are semantic to human beings, they
can act as a middle-level representation of image content and break the semantic
gap into two smaller but bridgeable gaps as follows: (a) Gap 1: the gap between
low-level digital image signals and the concept-sensitive salient objects; (b) Gap 2:
the gap between the salient objects and the relevant semantic image concepts. In
our implementation, we use Support Vector Machine to bridge gap 1, and Gaussian
Mixture Model to bridge gap 2.
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Fig. 14.2. Examples of the taxonomy of natural images.

14.3 Salient Object Detection

In our image content representation framework, salient objects serve as the basic units
of representation. Thus, the objective of this step is to parse the natural images into
salient objects in the vocabulary designed for certain vision purposes. Each type of
the salient objects can be taken as an abstraction of some visual properties that are
meaningful to certain vision purposes. On the basis of the basic vocabulary as shown
in Figure 14.2, we have designed a set of detection functions and each function is
able to detect one certain type of these salient objects in the basic vocabulary.

We use our detection function for the salient object “grass” as an example to show
how we can design our salient object detection functions. As shown in Figure 14.3,
image regions with homogeneous color or texture are first obtained by using mean shift
segmentation techniques [23]. It can be observed that oversegmentation is common in
the segmented image, which fractures an object into multiple small regions that have
little semantic meaning to human beings. This problem of oversegmentation will be
remedied at a later stage by merging to form the concept-sensitive salient objects.

Since the visual characteristics of a certain type of salient objects will look differ-
ently at different lighting and capturing conditions [2–4], using only one image is very
difficult to represent its characteristics and thus this automatic image segmentation
procedure is performed on a set of training images with the salient object “grass.”
The homogeneous regions obtained from the training images that are related to the
salient object “grass” are selected and labeled by human interaction.

Region-based low-level visual features are then extracted for characterizing the
visual properties of these labeled image regions that are explicitly related to the
salient object “grass.” These include one-dimensional coverage ratio (i.e., density
ratio between the pixels of real object region and the pixels of its rectangular bounding
box) for approximate shape representation, six-dimensional region locations (i.e., 2
dimensions for region center and 4 dimensions to indicate the rectangular bounding
box), 7-dimensional LUV dominant colors and color variances (i.e., 3-dimensional
average colors and 3-dimensional variance along every dimensions and 1-dimensional
variance in joint color space), 14-dimensional Tamura texture, and 28-dimensional
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Fig. 14.3. The flowchart for automatic detection of salient object: Grass.



P1: OTE/SPH P2: OTE

SVNY295-Petrushin September 18, 2006 22:1

296 Yuli Gao, Hangzai Luo, and Jianping Fan

wavelet texture features. The 6-dimensional region locations will be used to determine
the contextual relationships among different types of salient objects. The contextual
relationships among different types of salient objects (i.e., coherence among different
types of salient objects) can be used to distinguish different salient objects with
similar visual properties such as “grass” versus “tree,” where the salient object “tree”
has strong coexistence with the salient object “sky,” and the salient object “grass” has
strong coexistence with the salient object “flower.”

We use one-against-all rule to label the training samples �g j = {Xl , G j (Xl)
|l = 1, . . . , N }, where G j (Xl) ∈ {+1, −1}: positive for a specific visual salient object
and negative for all other samples. Each labeled training sample is a pair (Xl , G j (Xl))
that consists of a set of region-based low-level visual features Xl and the semantic
label G j (Xl) for the corresponding labeled homogeneous image region. Based on the
available visual features and labels, an image region classifier is learned from these
labeled homogeneous image regions.

As described before, in addition to the image representation framework, the choice
of a good classifier is a very important factor in building good semantic image classi-
fication systems. Thus we use Support Vector Machine (SVM) [24, 25] for learning
the binary image region classifier because of its recent success in a large variety of
applications.

Formally, consider a binary classification problem with sample set �g j =
{Xl , G j (Xl)|l = 1, . . . , N }, where the semantic label G j (Xl) for the labeled homo-
geneous image region with the visual feature Xl is either +1 or −1. For the positive
samples Xl with G j (Xl) = +1, there exists a hyperplane with parameters ω and b in
the kernel-induced feature space such that ω · �(Xl) + b ≥ +1. Similarly, for neg-
ative samples Xl with G j (Xl) = −1, we have ω · �(Xl) + b ≤ −1, where �(X ) is
the kernel-induced mapping from the input space to the higher dimensional feature
space. The margin between these two supporting planes is 2/||ω||2. SVM is designed
to maximize the margin with the constraints ω · �(Xl) + b ≥ +1 for the positive
samples and ω · �(Xl) + b ≤ −1 for the negative samples.

The margin maximization procedure is then transformed into a convex optimiza-
tion problem:

min
ω,b,ξ

1

2
ω · ω + C

N∑
l=1

ξl

subject to G j (Xl) · (ω · �(Xl) + b) ≥ 1 − ξl ,

ξl ≥ 0, l = 1, . . . , N .

where ξl ≥ 0 is the error slack variable and C > 0 is the penalty parameter for
the training error. Using kernel, we can implicitly map the original input space
Xl into a much higher dimensional feature space �(Xl) and the kernel function
is defined as κ(Xi , X j ) =< �(Xi ) · �(X j ) >. In our current implementation, we se-
lect Gaussian radial basis function (RBF) as the kernel function with κ(Xi , X j ) =
exp(−γ ||Xi − X j ||2), γ > 0, where γ and C are automatically determined by 10-fold
cross-validation on the training set. The optimal parameters (C,γ ) for some detection
functions are given in Table 14.1.
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Table 14.1. The optimal parameters (C,γ ) of some detection functions

Salient Brown horse Grass Purple flower Red flower Rock

C 8 10 6 32 32

γ 0.5 1.0 .05 0.125 2

Salient Water Human skin Sky Snow Sunset/sunrise

C 2 2 8192 512 8

γ 0.5 0.125 0.03125 0.03125 0.5

Salient Yellow flower Forest Sail cloth Sand field Waterfall

C 8 32 64 8 32

γ 0.5 0.125 0.125 2 0.0078125

At the testing phase, a new image will be first segmented with the same parameters
using mean shift technique, and then low-level features X̂ will be extracted for all the
homogeneous regions. Finally the existence of certain salient objects will be predicted
by sgn(ω · �(X̂ ) + b).

After automatic segmentation and classification is done, we perform region merg-
ing for neighboring regions of the same class to obtain salient objects. This is shown
as the second step in Figure 14.3. Although mean shift segmentation partitions single
object into multiple homogeneous image regions with none of them being represen-
tative for the object, salient objects have the capacity to characterize the principal
visual properties of the corresponding image object, and be visually distinguishable
and meaningful to human beings. This can be found from examples of salient objects

Fig. 14.4. The detection results of salient objects: Grass.
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Fig. 14.5. The detection results of salient objects: Sand Field.

in Figures 14.4 and 14.5. In addition, the key words for interpreting the salient objects
can be used to achieve image annotation at the content level.

After the detection of salient objects, a set of visual features are calculated in
preparation for the higher level conceptual modeling. They are 1-dimensional cover-
age ratio (i.e., density ratio) for a coarse shape representation, 6-dimensional object
locations (i.e., 2 dimensions for region center and 4 dimensions to indicate the rectan-
gular box for coarse shape representation of salient object), 7-dimensional LUV dom-
inant colors and color variances, 14-dimensional Tamura texture, and 28-dimensional
wavelet texture features.

14.4 Interpretation of Semantic Image Concepts

To interpret the semantic image concept quantitatively using the contextual relation-
ship among salient objects, we use Gaussian mixture model (GMM) to approximate
the class distribution for different types of the relevant salient objects:

P(X, C j , κ, ωc j , �c j ) =
κ∑

i=1

P(X |Si , θsi )ωsi (14.2)

where P(X |Si , θsi ) is the i th multivariate Gaussian mixture components with n in-
dependent means and a common n × n covariance matrix, κ indicates the optimal
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number of mixture Gaussian components, �c j = {θsi , i = 1, . . . , κ} is the set of
the parameters for these mixture Gaussian components, ωc j = {ωsi , i = 1, . . . , κ}
is the set of the relative weights among these mixture Gaussian components,
X = (x1, . . . , xn) is the n-dimensional visual features that are used for represent-
ing the relevant salient objects. For example, the semantic concept, “beach scene,” is
related to at least three types (classes) of the salient objects such as “sea water,” “sky
pattern,” “beach sand,” and other hidden image patterns.

The visual characteristics of a certain type of these salient objects will look dif-
ferently at different lighting and capturing conditions. For example, the salient ob-
ject “sky pattern,” it consists of various appearances, such as “blue sky pattern,”
“white(clear) sky pattern,” “cloudy sky pattern,” and “sunset/sunrise sky pattern,”
which have very different properties on color and texture under different viewing
conditions. Thus, the data distribution for each type of these salient objects is ap-
proximated by using multiple mixture Gaussian components to accommodate the
variability within the same class.

For a certain semantic image concept, the optimal number of mixture Gaussian
components and their relative weights are acquired automatically through a machine
learning process by using our adaptive EM algorithm [22]. It has the following advan-
tages in comparison with the traditional EM algorithm [26]: (a) It does not require a
careful initialization of the model structure by starting with a reasonably large number
of mixture components, and the model parameters are initialized directly by using
the labeled samples. (b) It is able to take advantage of negative samples to achieve
discriminative classifier training. (c) It is able to escape the local extrema and en-
able a global solution by reorganizing the distribution of mixture components and
modifying the optimal number of mixture components.

Once the GMM model for the Nc predefined semantic are obtained, our system
takes the following steps to class a new image into semantic categories as shown
in Figure 14.6: (1) Given a test image Ii , its salient objects are detected using our
detection function from the SVM model obtained previously. Since it is common that
one test image contain multiple salient objects Sj , we denote Ii = {S1, S2, . . . , Sn}.
(2) We calculate the class conditional probability for the salient object feature distri-
butions, given each semantic image class: P(X |C j , κ, ωc j , �c j ). (3) The test image
is finally classified into semantic image class C j , that yields the maximum posterior
probability:

P(C j |X, Ii , �) = P(X |C j , κ, ωc j , �c j )P(C j )∑Nc
j=1 P(X |C j , κ, ωc j , �c j )P(C j )

where � ={ κ, ωc j , �c j , j = 1, . . . , Nc } is the set of mixture parameters and relative
weights, and P(C j ) is the prior probability of the semantic image concepts C j in the
database. Thus this approach takes into account multiple salient objects detected
within an image and model its class-conditional distribution of the relevant semantic
image concept from the features of these salient objects. Some results of semantic
image classification are shown in Figures 14.7, 14.8, and 14.9.
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Fig. 14.6. The flowchart for semantic image classification and annotation.

Note that once we detect salient objects from a test image and obtain its image
semantic class, we can use the text for keyword-based image retrieval. The salient
object provides a natural image annotation at the content level, while the semantic
category gives an annotation at the concept level. This multilevel annotation enables
more power and expressiveness in semantic image retrieval and offers a common
user more flexibility to specify their query concepts via various key words at different
semantic levels.
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Fig. 14.7. The semantic image classification and annotation results for the semantic concepts

“beach” with the most relevant salient objects.

Fig. 14.8. The semantic image classification and annotation results for the semantic concepts

“garden” with the most relevant salient objects.
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Fig. 14.9. The result for our multilevel image annotation system, where the image annotation

includes the key word for the concept-sensitive salient objects “sky,” “rock,” “snow,” “forest,”

and the semantic concept “mountain view.”

14.5 Performance Evaluation

Our experiments are conducted on two image databases: photography database that
is obtained from Google search engine and Corel image database. The photography
database consists of 35,000 digital pictures, which are semantically labeled by the
search key. The Corel image database includes more than 125,000 pictures with differ-
ent image concepts. These images’ semantics are labeled by their original categories
maintained by Corel. All the unrepresentative image categories are manually removed
for a better control experiment. Salient objects are labeled interactively within each
image.

Precision ρ and recall � are used to measure the average performance of our
salient object detection functions:

ρ = η

η + ε
, � = η

η + ϑ
(14.3)

where η is the set of true positive samples that are related to the corresponding type
of salient object and detected correctly, ε is the set of false positive samples that are
irrelevant to the corresponding type of salient object and detected incorrectly, ϑ is the
set of false negative samples that are related to the corresponding type of salient object
but misdetected. The average performance for some detection functions is given in
Table 14.2.
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Table 14.2. The average performance of some

salient object detection functions.

Salient Brown horse Grass Purple flower

ρ 95.6% 92.9% 96.1%

� 100% 94.8% 95.2%

Red flower Rock Sand field

ρ 87.8% 98.7% 98.8%

� 86.4% 100% 96.6%

Water Human skin Sky

ρ 86.7% 86.2% 87.6%

� 89.5% 85.4% 94.5%

Snow Sunset/sunrise Waterfall

ρ 86.7% 92.5% 88.5%

� 87.5% 95.2% 87.1%

Yellow flower Forest Sail cloth

ρ 87.4% 85.4% 96.3%

� 89.3% 84.8% 94.9%

Elephant Cat Zebra

ρ 85.3% 90.5% 87.2%

� 88.7% 87.5% 85.4%

The benchmark metric for classifier evaluation includes classification precision
α and classification recall β. They are defined as:

α = π

π + τ
, β = π

π + μ
(14.4)

where π is the set of true positive samples that are related to the corresponding
semantic concept and classified correctly, τ is the set of false positive samples that
are irrelevant to the corresponding semantic concept and classified incorrectly, μ is
the set of false negative samples that are related to the corresponding semantic concept
but misclassified.

As mentioned above, two key issues may affect the performance of the classifiers:
(a) the performance of our detection functions of salient objects; (b) the performance
of the semantic classifier training techniques. Thus the real impacts for semantic
image classification come from these two key issues, the average precision ρ and
average recall � are then defined as

ρ = ρ × α, � = � × β (14.5)

where ρ and � are the precision and recall for our detection functions of the relevant
salient objects, α and β are the classification precision and recall for the semantic
classifiers.

The average performance for our semantic image classification technique is ob-
tained by averaging classification accuracy and misclassification ratio over the Corel
images and the Google photographies. In order to identify the real impact of salient
objects on semantic–sensitive image content characterization, we compared the per-
formance differences for two image content characterization frameworks: one using
image blobs and the other using salient objects. As shown in Table 14.3, one can
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Table 14.3. The semantic image classification performance (i.e.,

average precision versus average recall) comparison using

Gaussian Mixture Model—salient object vs. blob-based

Concept Mountain view Beach Garden

Salient ρ̄ 81.7% 80.5% 80.6%

Objects �̄ 84.3% 84.7% 90.6%

Image ρ̄ 73.5% 73.6% 71.3%

Blobs �̄ 75.5% 75.9% 78.2%

Sailing Skiing Desert

Salient ρ̄ 87.6% 85.4% 89.6%

Objects �̄ 85.5% 83.7% 82.8%

Image ρ̄ 79.5% 79.3% 76.6%

Blobs �̄ 77.3% 78.2% 78.5%

find that our image content characterization framework by using the salient objects
outperform the semantic image classifier using image blobs.

In order to compare the performance of semantic image classification using dif-
ferent classifiers, we perform SVM training for image semantic interpretation at the
conceptual level in comparison with the result of GMM model. The SVM training
process starts with unification of the salient object feature spaces into a joint image fea-
ture space. Then the same SVM training process is preformed as described in Section
3, using RBF kernel. The resulting optimal parameters for these SVM classifiers are
obtained from 10-fold cross-validation and shown in Table 14.4. The performance
comparison for semantic image classification using GMM vs. SVM is shown in Table
14.5 in comparison with Table 14.3. By determining the optimal model structure and
reorganizing the distributions of mixture components in our adaptive EM algorithm,
our proposed classifiers are very competitive with the SVM classifiers.

14.6 Conclusions

This chapter has proposed a novel framework to achieve a multilevel semantic image
annotation and classification. First, salient objects are detected using Support Vector
Machine for a natural middle-level image content representation. Then, Gaussian
Mixture Model is trained on top of the features of salient objects to accommodate the
visual variability within each semantic image category.

Table 14.4. The optimal parameters (C, γ ) of the

SVM classifiers for semantic concepts

Semantic concept Mountain view Beach Garden

C 512 32 312

γ 0.0078 0.125 0.03125

Sailing Skiing Desert

C 56 128 8

γ 0.625 4 2
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Table 14.5. The semantic image classification performance comparison

using Support Vector Machine—salient object vs. blob-based.

Concept Mountain view Beach Garden

Salient ρ̄ 81.2% 81.1% 79.3%

Objects �̄ 80.5% 82.3% 84.2%

Image ρ̄ 80.1% 75.4% 74.7%

Blobs �̄ 76.6% 76.3% 79.4%

Sailing Skiing Desert

Salient ρ̄ 85.5% 84.6% 85.8%

Objects �̄ 86.3% 87.3% 88.8%

Image ρ̄ 72.5% 76.3% 73.6%

Blobs �̄ 75.6% 79.4% 81.7%

Based on this novel semantic-sensitive image content representation and semantic
image concept interpretation framework, our semantic image classification system
has achieved very good performance in our large-scale experimentation with natural
images. More importantly, it provides a flexible way for novice users to query images
by key words.
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15. Extracting Semantics Through
Dynamic Context

Xin Li, William Grosky, Nilesh Patel, and Farshad Fotouhi

Summary. In this chapter, we introduce an MPEG-7 friendly system to extract semantics of

aerial image regions semiautomatically, through the mediation of user feedback. Geographic

information applications are unique in that their domain is highly dynamic. Such data sets are

a singularly appropriate environment in which to illustrate our approach to emergent semantics

extraction.

15.1 Introduction

Recently, many methods have been proposed to segment images and label image
regions for content-based image region retrieval and annotation [1, 2]. In this chapter,
we introduce a new MPEG-7 friendly system that integrates a feedback process with
image segmentation and region recognition, supporting users in the extraction of
image region semantics in highly dynamic environments.

Extracting semantics from image regions refers to labeling their semantic content
with a set of semantic descriptors. This can be performed either manually, automati-
cally, or, as in some experimental systems where user-friendly interfaces are provided,
semiautomatically. Given an image collection as input, such a system does the fol-
lowing: segments the images and clusters the resulting regions according to their
properties; provides the ability to efficiently index and query by image regions; and
uses specific standards to describe the semantic content of these regions. This topic
is attracting increasing interest as information technology proliferates throughout our
society, and it is especially being encouraged by the development of the World Wide
Web as a digital communications infrastructure.

The topics discussed in the remainder of this chapter is as follows. In Section
15.2, we touch on some existing work in the area of feedback-based semantic extrac-
tion for image data. Section 15.3 presents our overall system architecture, whereas
Sections 15.4 and 15.5 discuss our approaches to segmentation and semantics extrac-
tion, respectively. Section 15.6 presents an experimental justification for the power
of our system, whereas Section 15.7 covers our system’s MPEG-7 compatibility. Fi-
nally, in Section 15.8, we present our conclusions and possible improvements to our
system.

307
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15.2 Related Work

Despite the large amount of research in this field, there are few matured systems folded
into applications, because of several difficulties, the most important of which is the
problem of the semantic gap [3], the mismatch between users’ high-level semantic
concepts and the way that systems try to describe these concepts using low-level
image features. Experience has shown that it is extremely difficult to find a general
approach to accurately describe abstract semantic concepts by simply using low-level
image features in a straightforward manner.

To overcome the semantic gap, and because of the fact that users often do not
have the necessary domain knowledge for content-based image retrieval (CBIR) ap-
plications, many user feedback methods have been proposed. Their goal is to learn
interactively the semantic queries that users have in mind, overcoming the semantic
gap through user interaction [4]. In [5], it is proposed to start this user interaction
process from a coarse query, allowing the users to refine their queries as much as nec-
essary. Most of the time, user information consists of annotations (labels) indicating
whether or not an image belongs to a desired category. In such a strategy, the system
would use these labels to refine the computation of new relevant images.

Semantic labels comprise potential domain knowledge that can be reused in future
interaction processes [6, 7]. The accumulation of labels during many retrieval sessions
constitutes knowledge about the database content. Semantic learning, which exploits
this information, enables the system to enhance the representation of the images, and
thus, to increase its overall performance.

In [8], these feedback methods are defined as a continuous refining process over
CBIR query space:

Q = {IQ, SQ, FQ, Z Q} (15.1)

where IQ is the selected image set from the whole image archive, SQ is the selected
image feature set, FQ is the selected similarity function, and Z Q is the set of labels
to capture the semantics. Notice that all the four elements are goal dependent, and
therefore, depend on specific applications and users.

In most CBIR systems that support feedback processes, the query and labeling
processes are iterated. These systems try to learn a user’s goals, and update the query
space automatically or semiautomatically. This iterative process will continue until
the user feels satisfied with the query results. Therefore, such an interactive session
can be described as a series of state changes over the query space:

{Q1, Q2, . . . , Qn} (15.2)

where Qn captures the user’s goals. In most of these approaches, however, it is assumed
that the users know the image set, features, and similarity function. Unfortunately, this
assumption may not be true in many applications. For example, geographic informa-
tion systems often need to handle incremental data. Also, different users may choose
different similarity functions for different applications. However, most users cannot
specify these at the start, as they need to see the query results to decide whether the
current query space fulfills their semantic concepts. Therefore, the learning process
is the key issue for CBIR systems that support feedback processes.



P1: OTE/SPH P2: OTE

SVNY295-Petrushin November 1, 2006 16:20

15. Extracting Semantics Through Dynamic Context 309

Normally, as data sets grow large and the available processing power matches that
growth, the opportunity arises to learn from experience [8]. Taking advantage of this,
in [9], learning semantics from examples for CBIR applications is considered as a
traditional classification problem. Different techniques are discussed and compared
concerning this issue.

Although the above systems discuss user feedback, most of them do not address
extracting region semantics. Also, geographic information applications often show
properties of increasing data and emergent domain knowledge. It is often the case
that user semantics evolve on the basis of interaction with a particular geographic
data management system. These systems need to learn from example queries in order
to decide the segments and corresponding semantics in the feedback process. On the
other hand, users also need to see query results to decide whether the next step should
be resegmentation or labeling. Therefore, when we extend the feedback process to
the finer granularity of image regions, the situation will become more complex, as
systems needs to learn from examples to label existing regions, as well as to perform
frequent resegmentation in order to generate new regions.

15.3 System Architecture

In most cases, it is very hard to generate a proper segmentation without proper domain
knowledge. For example, users normally do not know the number of clusters when
they try to utilize a clustering-based segmentation method. Also, they do not know
the criterion for merging regions when they try to perform a region growing method
for image segmentation. Thus, we cannot expect accurate image segmentation in
the initial segmentation stage. Instead, we update the segments on the basis of user
interaction. Therefore, by extending user interaction to the finer granularity of image
regions, the system can learn to label regions, as well as to generate new ones.

Our system supports extracting an emergent segmentation and semantics through
dynamic context. Figure 15.1 shows the data flowchart of our system. In our approach,
there are two kernel data structures. The first one is an image region database that
stores each image region’s property data, such as various histograms, position, and a
pixel list. The second kernel data structure is a decision tree that is rebuilt each time

Initial image

segmentation

Generate tags

Most similar

region query

Query by

labels

Labeling

regions
Resegmentation

Remerging

Region

browser

Decision tree

Region

database

Fig. 15.1. System architecture.
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a user labels a region. Our system supports performing initial segmentation, labeling
regions, resegmenting regions, browsing regions, querying regions, and generating
MPEG-7 tags for regions. In our approach, the system automatically selects the next
proper region for the user to label through our interface.

15.4 Segmentation

We have developed two approaches for the initial segmentation stage as well as for any
subsequent resegmentation: a chi-square–based approach and a kruskal-Wallis–based
approach. The former is a supervised method, whereas the latter is unsupervised.
These methods are integrated into a unified framework to support further labeling
and resegmentation, as users may want to refine or update their labeling and image
segmentation.

Even though users may not have enough domain knowledge in advance, they can
still avoid the tedious process of selecting proper template regions for training, as
the semantics of these image regions will be extracted gradually through effective
user interaction. Therefore, initial segmentation is not a crucial stage in our method,
although we do discuss its details in this chapter, as it generates image regions for
further analysis.

Most of the existing image segmentation methods fit into two categories: boundary
detecting-based approaches, which partition an image by discovering closed boundary
contours, and clustering-based approaches, which group similar neighboring pixels
into clusters [10]. These methods try to explore two basic properties of pixels in
relation to their local neighborhood: discontinuity and similarity, respectively. Unfor-
tunately, they both suffer some weaknesses due to local noise.

In boundary detecting approaches, conventional border detection techniques are
widely used to detect discontinuities in pixel properties. However, in many cases, it is
hard to detect the real border, because of noise inside regions that do not have uniform
properties. Most of the conventional border detection techniques assume that edges
in images are areas with strong intensity contrasts—a jump in local features from one
pixel to the next (or from one sliding window to the next).

Thus, these approaches suffer the problem of overdetecting false borders, where
local features vary dramatically. We show an example of how the texture changes in
a region of the sea in an aerial image in Figure 15.2. In this example, we notice that
the texture property of the sea area that is near the shore changes dramatically, which
may cause a false border using conventional edge detection algorithms.

15.4.1 Chi-Square Method

In our chi-square–based approach, our method has the following steps:

1. Generate all possible regions with an existing clustering method.
2. Merge very small regions to larger regions.
3. Decide real borders from all possible borders and perform a region-growing algo-

rithm.
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Fig. 15.2. Example aerial image.

In the first stage of our initial approach, we perform a two-dimensional Haar wavelet
transform over the original image to extract corresponding wavelet coefficients and
then use linear interpolation to extend the size of the wavelet coefficients matrix to
that of the original image. We compute the feature for each pixel with coordinates
(x, y) below:

Fm = 1

n × n

n×n∑
i=1

W (xi , yi ) (15.3)

Fd = W (x, y) − Fm (15.4)

where n × n is the size of sliding window whose center is (x, y); features Fm and Fd are
the local mean and deviation for each pixel over its neighborhood (sliding window).
We then choose some sample regions on the basis of their texture, manually label them
with key words for future classification, and compute the feature vector (Fm, Fd ) of
pixels from these sample regions. Considering the domain of our application, the
textures of aerial image regions with the same semantic meaning are quite stable.
We assume that such feature vectors of pixels follow certain normal distributions.
Therefore, we can estimate the corresponding parameters N (μi , σi ) through sample
regions that belong to particular clusters.
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Our last step is to compute the chi-square intensity for each sliding window whose
center is (x, y). Assuming that all pixel feature vectors are independent, and that they
follow the normal distribution of the ith semantic class with parameters, the chi-square
intensity is

m∑
k=1

(xk − μi )
T × σ−1

i × (xk − μi ) (15.5)

where n × n is the number of pixels in each sliding window, xk is the two-dimensional
feature vector of pixel k in the given sliding window, μi is the two-dimensional mean
vector of the ith semantic class, and σi is the 2 × 2 covariance matrix of the ith
semantic class.

According to our assumption, this chi-square value follows the centered chi-
square distribution with free degree of n × n × d, where d = 2 is the dimension-
ality of the pixel feature vector. Therefore, on the basis of Bayes rule, we derive
that pixel (x, y) belongs to the ith semantic class as long as its chi-square value is
smallest.

In the second stage, we diminish those very small patches in the result of the first
stage for the convenience of the third stage. We order regions from the first stage by
their area and merge any region whose area is smaller than a given threshold. For each
pixel in the region to be merged, we compute its adjacent pixels. If the given pixel is
adjacent to some other regions, we assign this pixel to the region with the most pixels
adjacent to the given pixel. With this method, we gradually grow all the regions that
are adjacent to the region to be merged, until this region is diminished.

We cannot detect complete real borders by directly computing the chi-square
intensity from the original image, because this intensity changes dramatically along
the border. We have to generate all border candidates through a clustering method in
the split stage and detect the real border by computing mean chi-square intensities
along these possible borders.

Figure 15.3 shows the comparison of the segmentation result: the left segmentation
result is generated from clustering Haar wavelet coefficients by the fuzzy c-mean
clustering method, while the right segmentation result is generated from the chi-
square method. Notice that, compared to the fuzzy c-mean clustering method, the chi-
square method alleviates the problem of oversegmentation, as the chi-square method
diminishes small patches and has merged adjacent regions without dramatic change
of chi-square intensity along the possible borders.

We then use a decision tree to recognize the regions. First, we compute the per-
centile of each pixel for each semantic cluster based on Bayes rule:

P(Ci |(Fm, Fd )) = P((Fm, Fd )|Ci )P(Ci )
m∑

j=1

P((Fm, Fd )|C j )P(C j )

(15.6)

where P(Ci ) refers to the probability of an image containing pixels belonging to
semantic group i , P((Fm, Fd )|Ci ) refers to the probability of a pixel having feature
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Fig. 15.3. Comparison of segmentation results.

value (Fm, Fd ), given that it is in semantic cluster i , P(Ci |(Fm, Fd )) refers to the
probability of a pixel belong to semantic cluster i , given its feature value as (Fm, Fd ),
and m is the number of semantic clusters (key words).

As a simplification, assuming that P(C1) = P(C2) = .. = P(Cm), we can com-
pute the percentile as

P(Ci |(Fm, Fd )) = P((Fm, Fd )|Ci )
m∑

j=1

P((Fm, Fd )|C j )

(15.7)

and compute the feature vector (P1, P2, . . . , Pm) for each region as

Pi =

l∑
k=1

P(Ci |(Fmk , Fdk ))

l
(15.8)

where l is the number of pixels in the merged regions. Finally, we build a decision
tree for regions, on the basis of the feature vector (P1, P2, . . . , Pm). We train this
decision tree by feature vectors of sample regions and label regions, using this decision
tree.

Our work shows that classification methods can be utilized for region recognition,
but we also realize that there is more work to be done for improvement. First, users
have to select enough sample regions to train the decision tree properly. Not only
does this increase the workload of users, however, but it also makes the quality of the
end result very sensitive to individual user selections. If a user does not select proper
sample regions or simply does not include a given semantic class, the recognition
power will be reduced. Second, the centroids of the different semantic classes of
image regions can be close, creating noise that affects the recognition quality. This
problem limits the number of semantic classes that we can recognize. We also have
assumed that the probabilities of pixels belonging to each semantic class are equal.
Experience shows, however, that this assumption may not apply to different image
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collections. Finally, we notice that we need to describe a similarity distance of sliding
windows more related to human perception. Therefore, our work has focused on the
following aspects.

1. Reduce users’ interaction loads and instrumentally-based subjective factors that
negatively affect the system’s power.

2. Extend our work to a complete database environment.

Generally, we notice that many problems are due to the fact that users initially lack
domain knowledge. For example, users do not know in advance how many image
region classes there are, nor do they know in advance the proper label set. Unfortu-
nately, our initial method depends on knowing this domain knowledge, as it is used to
derive various parameters. Therefore, this prompts us to turn to unsupervised methods
to reduce the workload for the users and the requirements for applying our method.

15.4.2 Kruskal–Wallis Method

Our Kruskal–Wallis–based image segmentation approach has the following steps.

1. Generate all possible regions with an existing clustering method and store the
wavelet decomposition data in MPEG-7 format.

2. Diminish small patches.
3. Merge the possible regions based on the nonparametric statistical method of the

Kruskal–Wallis test.

In the third stage, we detect real borders and merge those possible regions. Our first
step is to extract the borders along all those possible regions. As we have segmented
the image, it is easy to use existing edge detection methods to detect the possible bor-
ders. There are many false borders in the image due to oversegmentation, however,
and it is natural that users may want to incorporate some global information to merge
these regions. The key idea here is to detect the change of features along each border,
rather than globally. In Figure 15.2, notice that even the regions with the same se-
mantic meaning have largely varying texture, such as sea areas. This problem causes
oversegmentation, as similarity-based methods only cluster the pixels or sliding win-
dows based on local features, without considering changes in their neighborhoods.
Unfortunately, it is very hard to define the scope of a proper neighborhood, as this
depends on the context of images and the application domain. In our case, we can
define the scope of neighborhoods as pixels or sliding windows along the possible
borders within a certain distance.

The Kruskal–Wallis test is a nonparametric test for comparing three or more
independent groups of sampled data independent of their distributions. It is utilized as
an alternative to the independent group ANOVA when the assumption of normality or
equality of variance is not met. This method is similar to many other nonparametric
tests, and is based on an analysis of variances using the ranks of the data values
instead of the data values themselves to calculate the statistics. The hypotheses for
the comparison of two independent groups are:
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� H0: The samples come from identical populations.
� H1: The samples come from different populations.

In our method, we perform a Kruskal–Wallis test with three groups of data to
decide whether the border is false and that we should merge two adjacent regions
A and B: the neighborhood pixels in regions A and B along the border, as well
as the pixels on the border itself. Our assumption is that if the border is false, the
texture change across the border should be moderate and gradual. A Kruskal–Wallis
test will show that these groups of pixels come from an identical population. On
the other hand, if the border is real, the change across the border will be dramatic,
and the Kruskal–Wallis test will show that the groups of pixels come from different
populations.

P = Kruskal–Wallis(GregionA, Gborder, GregionB) (15.9)

where GregionA, Gborder, and GregionB are feature values from the appropriate groups of
pixels. If P is more than the threshold, we will merge the two regions; otherwise, we
will leave the border as a real border. Figure 15.4 shows an example of segmentation
after we have merged some regions. Notice that oversegmentation is reduced, both
on the sea and on land areas.

Fig. 15.4. Results of Kruskal–Wallis method.
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To recognize the regions using the Kruskal–Wallis method, we predefine a given
number of nodes for this approach, each one corresponding to a possible semantic
category for the region descriptors. After the clustering, we choose a number of
random, so-called template, regions that cluster around each node, and annotate them
manually, choosing a semantic category in which all of these regions participate.
Notice that we label each cluster according to template regions that are generated
automatically (the system will generate the template regions whose features are closest
to the centroids of the clusters). Once a particular cluster is labeled, all the regions in
that cluster will be labeled with same key word.

15.5 Extracting Semantics

As we previously discussed, to reduce the workload and inherent instrumental sub-
jectivity of the users, we tried the unsupervised Kruskal–Wallis method. However,
it turns out that an unsupervised method also has its weaknesses. It is hard to know
certain domain knowledge in advance, such as the appropriate number of clusters
and the threshold of merging two adjacent image regions. Therefore, it is a natural
extension to build a system that supports a feedback process. By implementing such
a system with a convenient interface that can learn from patterns given by the users
during interaction, we reduce the workload of the users, as well as the risk inherent in
subjectively selecting the template image regions, as the users always can resegment
and reclassify the image regions according to the latest domain knowledge that they
have. In this section, we will introduce the functionality of our system and show its
effectiveness.

In our system, even though we inherit the image segmentation result of Kruskal–
Wallis method, we provide a convenient interface to label the image regions, as well
as to resegment the images based on knowledge gained by the users. For example, if
two adjacent regions have the same label according to either user interaction or the
system’s classification, these two adjacent regions need to be merged into one new
region. Therefore, each time a user labels a region, the decision tree may be changed,
with a resultant change in the segmentation of every image.

To improve performance, the system only performs remerging over the image
being browsed. The remainder of the images will not be remerged according to the
updated decision tree until the users actually view them. Each image has a dirty bit.
Once the decision tree is updated, all the dirty bits will be set to 1. If an image is
remerged, the corresponding dirty bit will be reset to 0.

Each region that the users label is considered as ground truth. Thus, the label for
these regions will be considered correct and never changed. These cases will also be
added to the decision tree as training data. If the decision tree has been updated, all
dirty bits will be set for the remerging process.

The nonground truth regions will be reevaluated according to the decision tree
each time a user labels a region as ground truth, but only some of these regions will be
assigned labels. We have built a system that supports a feedback process. The domain
knowledge will continue to grow as long as the users continue to label the regions.
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Thus, the decision tree will also keep growing until the users are satisfied. Initially,
there are few ground truth cases, and the decision tree often can overfit the training
data. Labels generated under these conditions may not be very accurate. When users
continuously input new ground truth cases, however, the decision tree will become
more stable. In our algorithm, after reevaluating the regions’ labels according to the
updated decision tree, only the regions whose features have distances less than a
given threshold to those of the nearest ground truth cases with the same labels will be
assigned semantic labels, the rest of the regions remaining as unknown. Note that it
is possible that labels for these regions can be changed in the next round of labeling,
as the decision tree keeps growing and being updated.

Finally, the system will request that users label uncertain cases. These cases are
defined as the unknown regions that are nearest to the current ground truth case in
the feature space. Labeling them will expand the known area of semantic classes in
the space of features. Therefore, each time a user labels a region, both the number of
ground truth cases and the number of uncertain cases increase. This functionality can
help the users label the regions more efficiently, as they need not label those regions of
which the system is quite sure (the regions that are very close to the ground truth cases
in the feature space). Therefore, the feedback process affects not only the system by
providing training data on the one hand, but also a user’s next labeling action on the
other hand.

The interface also allows the user to ask the system to identify the region that
should be labeled next. This is an important strategy, as the system will decide which
region is worth labeling for the purpose of efficient learning.

15.5.1 Image Resegmentation

We merge two adjacent regions only if they have the same semantic label. Even
though the segmentation of an image can be changed over time, the unknown regions
in this image will remain the same, as they do not have any semantic labels assigned
to them. Therefore, all the remaining uncertain regions will never change because
of remerging, as they are also unknown regions. They can only be affected by two
factors: an unknown region can be assigned an uncertain semantic label when the
decision tree is rebuilt or a ground truth semantic label when a user directly labels
it; on the other hand, new uncertain regions can be generated when a user labels an
uncertain region as a ground truth region. By implementing this schema, we avoid
remerging regions from all images each time a user labels a region. The system only
remerges regions from a particular image when necessary. The effect of this is the
same as remerging regions from all images immediately after reclassification, as the
ground truth cases, uncertain cases, and the images presented to the users are always
updated according to the latest knowledge.

The size of the image regions will increase if remerging is performed, and de-
crease if resegmentation is performed. Remerging is automatically triggered when
users browse image regions, while resegmentation is triggered manually by the users.
Figures 15.5 and 15.6 show an example of remerging and resegmentation. Initially,
this region is segmented incorrectly, as it contains both sea and urban areas. The user
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Fig. 15.5. Initial segmentation results.

resegments the current region in the first step. In the second step, the user labels other
regions and accumulates ground truth cases. When domain knowledge accumulates
to a certain point, the two adjacent sea regions are merged together as they have
the same semantic label. Finally, when the user is satisfied, this image is completely
labeled and the corresponding MPEG-7 tags are generated.

In Figure 15.5, we show an image with its initial segmentation result. Figure
15.6 shows an example of how a recognized region in an image grows when a user
continuously labels other sea regions. Compared with the initial segmentation method,
there are two advantages. First, segmentation can be changed according to domain
knowledge. For example, a mixed region can be split because of resegmentation.
Second, users need not predefine many parameters such as the number of clusters,
and need not provide a predefined training set. Thus, the system avoids some potential
problems due to the lack of domain knowledge, such as an error in labeling, due to

Fig. 15.6. Recognition results.
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an improper training set. Instead, users can adjust the training sets during interactive
sessions.

Relabeling a region either with an existing label or with a new label will update the
decision tree, automatically affecting the labels of other regions. This is particularly
convenient for users who do not have enough domain knowledge in advance. For
example, a user may only know at first that there are two categories of regions: sea
and land. After a series of interactive labeling, he realizes that there should be more
subcategories for land. Therefore, he relabels some regions previously labeled as land,
by the labels urban area or trees. Therefore, users can extract an emergent semantics
through a dynamic context. They need not know the number of clusters and proper
label sets in advance. Instead, they can label regions incrementally. This is a particular
advantage of our system, especially for applications that need to handle incremental
data and fulfill the requirements of different users, as it is very hard to give a unified
predefined training data set and a corresponding label set in the initial segmentation
stage.

Because users often do not have enough domain knowledge in advance, they often
do not have a proper predefined set of key words at the very beginning of the labeling
process, nor know the proper granularity of the region clusters. Therefore, users
initially can set the number of classes too small, causing a very scattered distribution
of the features from the same class. This suggests that there can be more semantic
subclasses of the features with different semantic meaning, and that we need to
reclassify the features with a finer granularity. For example, a user can find that it
is too general to describe the content of image regions with the label land, as the
texture properties and semantic meanings of regions with this label are very different.
Therefore, this user needs to refine the semantic class of land with more detailed
semantic classes, such as urban area and farm.

To control this reclustering process, we need a parameter, called a reclustering
index in our system, to evaluate the scatter degree of the distribution of the features
in a particular semantic cluster. The average distance of each data element from the
centroid of the same class serves as its definition. If this parameter is larger than a
given threshold, the system will prompt the users to perform a reclustering process.

Reclustering Index j = 1

n

n∑
i=1

Distance(x j
i , centroid j ) (15.10)

centroid j = 1

n

n∑
i=1

x j
i (15.11)

The reclustering index for each semantic class is shown on our interface. For
example, suppose that the reclustering index for the land class is much larger than
that for the sea class. This suggests that the land semantic class may need refining.
To refine our labeling, the user can retrieve all regions with the land label by a label
query. This process can continue until the users are satisfied. The reclustering index
provides the users with a measurement for the goodness of the existing semantic
classes. However, the users will make the final decisions, as to whether to generate
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Fig. 15.7. An image segmentation and label example (recognized manually).

new semantic classes. As long as this process continues, new labels will be generated
continuously by the users to extract an emergent semantics in a dynamic context.

Figure 15.7 shows an example of an image that is labeled manually by the user.
We use this ground truth example and a series of snapshots, shown in Figure 15.8, to
show some subsequent image segmentation and labeling. In these snapshots, the blue
area represents sea; the cyan area represents an urban area; the red area represents a
trees area; and the white area represents an unknown area. Each snapshot was taken
after six labeling actions. Notice that some white area still remains, which suggests
that the process will continue.

Fig. 15.8. Snapshots of image segmentation and the labels of the regions.
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Fig. 15.9. Accuracy of recognition.

15.6 Experimental Results

In our approach, we use the aerial images from the USC-SIPI image database for
our new approach. This image database (http://sipi.usc.edu/database/Database.html)
is maintained by the Electrical Engineering Department at University of Southern
California. We used only the images of resolution 1024 × 1024, and transformed
them into gray scale images, as we are concerned with employing texture-based
features for CBIR applications. In our experiment, we generated 1168 regions in the
initial segmentation stage.

To evaluate the performance of recognition accuracy, we computed this measure
as follows:

accuracy = Number of Correctly Labeled Pixels

Total Number of Pixels
(15.12)

Figure 15.9 shows the recognition accuracy of nine snapshots, the first of eight
of which are taken from Figure 15.8. Each snapshot was taken after six labeling
actions. Notice that the recognition accuracy increases smoothly at first, then increases
dramatically when the number of ground truth cases reaches a certain amount, after
which it increases smoothly again. This shows that when the domain knowledge
accumulates to a certain amount, the recognition accuracy can be greatly affected.

We also compare our feedback approach with that of the chi-square and decision
tree method that we mentioned before, using the same training sets.

This result shows that our feedback system is promising (see Table 15.1), not
only because of the current recognition result, but its potential to further improve by
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Table 15.1. Comparison of recognition accuracy.

Chi-square and decision tree method 0.6707

Feedback system 0.7025

more interactions. For example, we can improve our resegmentation method for more
accurate region set or improve the learning strategies to reduce users’ workload.

15.7 Supporting MPEG-7

In our system, we integrate several MPEG-7 descriptors to describe the semantic con-
tent of image regions. These descriptors are extended to a database environment (eX-
ist). We also discuss the access strategy of the database system for these descriptors and
the schema that manages the incremental database. As our system utilizes the accumu-
lated training set during interactive sessions, users can extract emergent semantics to a
deeper level. With this user interaction, users can more accurately extract the structure
of the high-level concepts in their mind, carry out the relabeling processes with more
convenience, reduce the reclustering load of the system, avoid the potential problems
due to the lack of domain knowledge, and manage the increased data more efficiently.

In our approach, aerial images are stored in an aerial image database while various
MPEG-7 image descriptors are stored in the eXist database system. Image insertion
and querying are multistage processes that overlap somewhat, producing various types
of MPEG-7 descriptors that are stored in an integrated fashion in eXist.

We used MATLAB and eXist software to implement our system. eXist is an Open
Source native XML database featuring efficient, index-based XQuery processing,
automatic indexing, extensions for full-text search, XUpdate support, and tight inte-
gration with existing XML development tools. The database implements the current
XQuery 1.0 working draft as of November 2003, with the exception of the XML
schema related features. The database is lightweight, completely written in Java, and
may be easily deployed in a number of ways, running either as a stand-alone server
process, inside a servlet-engine, or directly embedded into an application.

After we label clusters of image regions with key words, we generate the cor-
responding MPEG-7 files to describe their semantics. These files will be loaded in
eXist to support further XQuery and XUpdate.

15.8 Conclusion

We have investigated several different methods to negotiate the semantic gap in differ-
ent stages of the image segmentation and annotation process, and have the following
summary.

1. Clustering-based image segmentation methods often tend to generate an overseg-
mented result. Because of the lack of domain knowledge, these methods often
fail to integrate global image information and generate scattered image regions
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according to dramatic changes of the neighborhood features. Therefore, it is a
natural extension for us to utilize a split-and-merge process to reduce the over-
segmentation. The crucial idea is to merge adjacent regions that do not have a
dramatic change of texture property along their borders. Notice that our methods
merge the adjacent regions based on the changes of texture properties along the
entire border between them. Thus, we utilize global image information to reduce
the oversegmentation. We implemented both supervised (chi-square–based) and
unsupervised (Kruskal–Wallis–based) methods. These methods have been inte-
grated into our system. However, we notice the split-and-merge process can only
achieve limited success for image segmentation and annotation due to the lack of
domain knowledge. For example, in the chi-square–based method, users need to
decide the number of semantic classes and provide proper training examples for
each semantic class, while in the Kruskal–Wallis method, users need to decide
the merge threshold of adjacent image regions. These parameters and training sets
need to be predefined by the users in advance. However, as we mentioned previ-
ously, in most CBIR applications, the users do not have such domain knowledge
at the start. Instead, they need to accumulate this knowledge through a dynamic
context. Thus, lacking domain knowledge comprises the main difficulty of our
methods utilizing split-and-merge processes.

2. We have integrated image segmentation and classification into a feedback process.
As we emphasized previously, when we extend CBIR applications from images
to image regions, the data object set still needs to be automatically updated, even
though the users do not add new images. This is an obvious difference from those
feedback systems concerning only with global images, as initial image segmenta-
tion normally cannot be accurate due to the lack of domain knowledge. Instead,
image segmentations need to be updated as the system continues to learn patterns
from the user’s interactions in order to perform classification and resegmentation.

3. We direct the users to label specific uncertain regions to extract semantics effi-
ciently. As the system needs to learn the domain knowledge through a dynamic
context, efficient learning is important for user interaction. Normally, the system
expects to know the label of the unknown regions whose features are far enough
from the already-known ones (ground truth cases). We expect that the ground
truth cases (regions that the users label) are evenly distributed in the feature space
spanned by all the region features.

4. We have integrated different MPEG-7 descriptors in a dynamic context to extract
emerging semantics. MPEG-7 has shown its potential in some projects. However,
current work focuses on describing the semantics of the entire image, rather than
individual image regions. Besides, most of the works test only a single MPEG-7
tag in CBIR applications; few of them integrate and test multiple MPEG-7 tags.
Our experience shows that it is important to integrate multiple MPEG-7 tags in
a unified framework and extend it to a database environment such as the eXist
database system.

Our system also shows potential of further improvements. These possible improve-
ments include the following aspects:
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� Extend the current system to integrate more MPEG-7 descriptors under a unified
platform.

� Our system needs to be extended to support multiple views.
� We need to develop efficient learning strategies.
� We need to extend region labeling from key words to arbitrary ontologies.
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16. Mining Image Content by Aligning
Entropies with an Exemplar

Clark F. Olson

Summary. To efficiently answer queries on image databases at run time, content must be
mined from the images offline. We describe a technique for locating objects in the library for
which we have an exemplar to compare against. We match the images against the exemplar by
comparing the local entropies in the images at corresponding positions. This representation is
invariant to many imaging phenomena that can cause appearance-based techniques to fail. It
can succeed even when the images are captured with different sensors (e.g., CCD vs. FLIR).
We employ a search strategy that combines sampling in the space of exemplar positions,
the Fast Fourier Transform (FFT) for efficiently evaluating object translations, and iterative
optimization for pose refinement. Experiments indicate that the sampling can be somewhat
coarse. The techniques are applied to matching exemplars with real images. We describe
strategies for scaling this approach to multimedia databases and conclude with a discussion of
future work that would be beneficial for mining content from images and video data.

16.1 Introduction

Many current image and video databases are databases in name only. They are un-
managed collections of data, rather than being managed by a database management
system (DBMS) that provides a facility for forming and processing complex queries
on the data. For these to become true databases, they require not only integration with
a DBMS, but the DBMS must also have tools to perform content-based queries on
the images. Considerable work on content-based image retrieval has studied methods
to extract general information from images in order to support some queries at run
time [1]. However, the generality of these methods precludes them from supporting
specific, complex queries, such as “In which video sequences does Tiger Woods ap-
pear after Annika Sorenstam?” or “Which patients have MRI images that contain
both benign and malignant tumors?” To create true databases from collections of
multimedia data (specifically images and video sequences) content must be mined
from the data offline in order to efficiently support complex queries at run time.

One solution is to retrieve images based on shapes present in the images. However,
shape-based image retrieval is a difficult problem. The reason for this is the intractabil-
ity of the segmentation problem to extract shape information from complex image
data. Extending such retrieval to video data gains the benefit (and the curse) of orders
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Fig. 16.1. Motivating example. (a) Aerial image captured in the the Mojave Desert, California.
(b) Orbital image of the Avawatz Mountains and Silurian Valley in the Mojave Desert,
California. The box shows the location of the aerial image in the orbital image.

of magnitude more data to examine. For this reason, we believe it is likely that the
most common method for extracting content from image and video databases will be
through matching against appearance-based exemplars. Appearance-based matching
has achieved good results in many areas of computer vision, including face recog-
nition [2] and object classification [3]. However, appearance-based techniques face
difficulties when objects vary from the expected appearance due to differences in
sensor, lighting, and configuration.

We build upon previous work for robust image matching [4–6] to extract matches
in the database using image exemplars. Figure 16.1 shows an example of appearance-
based recognition using an exemplar. In this example, a location in an orbital image is
detected using an aerial image of the same location even though the images were cap-
tured with different sensors, at different resolutions, and somewhat different viewing
direction.

The goal of this work is to develop a matching measure that is robust to chang-
ing sensors, lighting conditions, and image motion together with an efficient search
strategy for locating good matches according to the measure. This would allow the
technique to be used, for example, to detect all instances of a particular location in a
database of geographical images using an exemplar.

Maximization of mutual information [7,8] has been successful in robust matching.
However, this technique has limitations that prevent it from being successful in some
cases. One drawback is that there is no efficient strategy for large search spaces. It is
common to use an iterative technique, but these require a good starting location for
refinement. In addition, the robustness of maximization of mutual information makes
it susceptible to false positives. In the example in Figure 16.1, this strategy fails to
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find the correct location, even when searching over just translations of the exemplar
at the correct rotation and scale. A final problem with this technique is that it is not
able to find matches between images when there are smooth shading changes (e.g.,
owing to curved surfaces) unless more than one exemplar is used.

The correct match in Figure 16.1 was found by transforming both the exemplar
and the search image into new images, replacing each pixel with a local entropy mea-
surement. The scoring function for each position of the exemplar examines how well
the local entropies are correlated between the exemplar and the corresponding loca-
tions in the search image. The optimal match was detected over affine transformations
of the exemplar image.

To find matches for an exemplar, we use a search strategy that samples positions
from the space of rotations and scales (also shears, when using affine transformations).
The Fast Fourier Transform (FFT) is used to perform fast search over the translations
of the exemplar at each sampled rotation and scale. The candidates found in this
search are refined using an iterative optimization to locate the best position(s). This
strategy has been effective on small collections of images. For large databases, further
advances are likely to be necessary. We discuss strategies that have potential for
efficient performance in these cases.

Our search strategy can be applied to any method that maximizes the correlation
or normalized correlation of statistics between an exemplar and database images over
a space of transformations. For example, we could apply this strategy to image match-
ing using gradients, as is done in [9]. We use local entropies, rather than gradients,
since they appear to retain more of the information content in the original image
and have produced fewer false positives in our experiments. In the search, we can in-
clude translations, similarity transformations, affine transformations, and, potentially,
more complex transformations. This strategy can also be extended to handle multiple
statistics and vector-valued images, such as the entropies computed at multiple scales.

16.2 Related Work

A large body of previous work exists on retrieving images satisfying various charac-
teristics from an image collection [1]. Influential early systems include QBIC [10],
Photobook [11], and the Virage engine [12]. The QBIC (Query By Image Content)
system uses image frames and objects that have been segmented (manually or auto-
matically) from an image. Images and objects segmented from them are represented
by sets of features representing color, texture, shape, location, and sketch. Queries can
be performed on entire images or individual objects using these features. Photobook
similarly allows searches to be performed using extracted image features. Three types
of image properties are used: appearance (e.g., segmented faces), two-dimensional
shape (tools, fish, etc.), and texture (wood, honeycomb, grass). Each of the image
properties is represented in the database using a small set of coefficients (30 to 100)
from which the original image can be reconstructed with little error. The image prop-
erties can also be combined to form searches that are more complex. Virage provides
an image search engine has three functional parts: image analysis, image comparison,
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and management. Preprocessing operations and primitive extraction are performed
during image analysis. During image comparison, similarity measures are applied to
pairs of primitive vectors that have been extracted from images and combined using
weights. The management function performs initialization, and manages the weights
and primitive vector data.

Recent systems include NeTra [13], which first performs segmentation of the
image into distinct regions. Queries are performed through indexing using color, tex-
ture, shape, and spatial location. PicHunter [14] uses relevance feedback to predict
the image desired by the user given their actions. The overall approach is Bayesian,
with an explicit model of the user’s actions. PicHunter uses annotated images; how-
ever, the annotations are hidden from the user to reduce confusion on the user’s part.
PicToSeek [15] uses color and shape invariants to retrieve images from a database.
New color models are used to gain invariance to viewpoint, geometry, and illumina-
tion. Shape is extracted through color invariant edge detection. The shape and color
invariants are combined into a single high-dimensional feature set for discriminating
between objects. Blobworld [16] segments images into regions that have uniform
color and texture through clustering. Images are retrieved by examining the similarity
between user-selected example regions and those extracted from the image collection.
Users are given access to the internal representation to develop improved queries.

Aside from these systems, many interesting techniques have been described. Color
histograms [17] were an early method to index an image collection based on color
information in the image. While this technique is able to find images with a similar
color distribution, the precision of this technique is not always high owing to false
positives. Joint histograms [18] improve color image histograms by adding additional
information, such as edge density, texturedness, gradient magnitude, and intensity
rank. Additional improvement can be gained by adding spatial information, such as
in color correlograms [19]. These are essentially a form of histogram, where each bin
records the number of pairs of pixels with specified colors and distance between them.

Most previous systems compute global image descriptors for the example image
and the images in the database in order to compare them. This approach inherently
limits the method to cases where the example image and the matches encompass
roughly the same structure, without occlusion or additional clutter in either image.
An alternative is to index images using invariants or quasi-invariants of local image
features [20,21]. This allows images to be indexed even if only a small portion of the
exemplar is present in image.

Note that most content-based image retrieval systems require a user in the loop
in order to refine queries and locate the desired images in the database. The tech-
niques described here extract content from multimedia databases automatically. User
involvement is required only for queries on the database, after the relevant information
has been extracted from the multimedia data.

16.3 Matching with Entropy

The basic technique that we use for detecting matches is to compare local entropies
in an exemplar image against reference images from a database over some space of
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relative positions between the images [4]. Let us say that a discrete random variable
A has marginal probability distribution pA(a). The entropy of A is defined as

H (A) = −
∑

a

pA(a) log pA(a). (16.1)

Note that

lim
x→0

x log x = 0. (16.2)

The (undefined) value of 0 · log 0 is, thus, taken to be zero.
We transform both the exemplar and each database image by replacing each pixel

with an estimate of the local entropy in the image. Here we are treating the pixels in
a small neighborhood around each location as samples from a random variable and
estimating the entropy of this random variable. For the pixel at location (r, c), the
sample set consists of the neighboring pixels in a k × k image patch centered at (r, c).
The pixel intensities are placed in a histogram and the entropy of the distribution
is computing using Eq. (16.1). Our implementation uses a histogram with 64 bins
and we smooth the histogram with a Gaussian (σ = 1.0 bins) prior to computing the
entropy to improve the estimate.

Figure 16.2 shows the entropy images generated for several neighborhood sizes.
The entropy transformation captures the degree of local variation near each pixel

(a) (b) (c)

(d) (e)

Fig. 16.2. Entropy images computed using different neighborhood sizes. (a) Original image.
(b) Entropy image for 3 × 3 window. (c) Entropy image for 5 × 5 window. (d) Entropy image
for 11 × 11 window. (e) Entropy image for 21 × 21 window.
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in the image. Larger neighborhoods yield smoother entropy images, while smaller
neighborhoods yield sharper images. We expect this to be a useful property in order to
create a multiresolution search strategy, using entropy images. The generated images
are invariant to a constant additive change (bias) to the images. While the images
are not invariant to multiplicative change (gain), the correlation peaks are invariant
to such changes (modulo smoothing and binning effects). The entropy images are
insensitive to other image effects, such as illumination change and even changes in
sensor modality.

To find matching positions of the exemplar in a collection of images, we can
find positions of the exemplar that maximize the normalized correlation between the
entropies in the exemplar and a reference image from the collection. To find the best
positions, we have to take into account rotation and scaling of the exemplar (and
sometimes shearing) with respect to the reference image. This implies that the shape
and scale of the exemplar will vary over the search space and we must account for this
in the normalization. When transforming the exemplar, we generate a second image
that stores the shape of the transformed exemplar. Pixels covering the position of the
transformed exemplar will have a value of 1, except for the borders pixels, which
will have smaller weights according to bilinear interpolation. Now, when we perform
correlation with the transformed exemplar, we perform the same correlation with the
shape image. This yields the normalization value for the reference image.

16.4 Toward Efficient Search

Since multimedia databases can store terabytes of information, it is necessary to use
highly efficient strategies for processing the data. In some cases it will be unacceptable
for the mining to require days to operate, but it may be acceptable in large databases to
mine the data over the course of hours (or overnight), since this step can be performed
offline. Current strategies for robust appearance-based matching are computationally
intensive. Matching using mutual information [7, 8] is a leading technique for such
matching. However, there is currently no search strategy that is both general and
efficient for this technique.

Our current approach combines fast two-dimensional matching using the FFT,
coarse sampling of the remaining pose parameters, and iterative refinement to detect
the optimal position(s) [4]. Search over the two degrees-of-freedom corresponding to
translation in the image can be performed very quickly in the frequency domain using
the FFT, since this allows cross-correlation to be performed in O(n log n) time, where
n is the size on the image. In more complex search spaces, including similarity and
affine transformations, we sample the remaining parameters on a grid to ensure that
a sample point is close to every point in the search space. For each sample point, the
translation parameters are searched with the FFT and strong candidates are further
refined using Powell’s iterative optimization method [22].

Since our search strategy relies on sampling the space of rotations, scales, and
shears of the exemplar, we must determine how finely these parameters must be
sampled to find instances of the exemplar. A sparse sampling facilitates efficient
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Fig. 16.3. Experiment to determine the capture range. The detection rate is plotted versus the
maximum sample error for both entropy matching and gradient matching.

matching, but may miss instances that are desired. We, thus, need to know how far a
sample point can be from the correct positions and still find a match for the exemplar
after the iterative step in our search strategy. This implies that the initial correlation
step must find a large enough peak to trigger the refinement step and the iterative
refinement must also converge to the correct location. Experiments indicate that a
somewhat coarse sampling is sufficient.

We tested the sampling resolution necessary using several sample problems.
Examples can be seen in Figures 16.1, 16.2, 16.5–16.8. Two of the problems
(Figures 16.1 and 16.3) used affine transformations (6 degrees-of-freedom):[

x ′

y′

]
=

[
a b
c d

] [
x
y

]
+

[
tx

ty

]
. (16.4)

The other problems used similarity transformations (with 4 degrees-of-freedom).
In these problems the following constraints were enforced:

a = d. (16.5)

and

b = −c. (16.6)

Our tests considered samples from the search space that were in error by a bounded
amount for each of the parameters a, b, c, and d. The search strategy described above
was then applied for finding translations with sufficiently large scores for further
evaluation and iterative optimization of those locations. Figure 16.4 shows a plot of
the detection rate versus the maximum sample error for our technique. Results are
also shown for this search strategy applied to gradient images instead of entropy
images. The data points in each plot were determined using 100 trials for each of
the sample problems. For small errors, the techniques using entropy work extremely
well. Up to an error of 0.05 in the parameters, very few errors occur. The error of 0.05
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Fig. 16.4. Location matching using aerial and orbital images. (a) Aerial image of California
desert. (b) Entropy image computed from (a). (c) Detected location in an orbital image. Entropy
can be seen in Figure 16.2.

represents a 5% scale change or a (roughly) 3 degree rotation of the exemplar. This
implies that we can sample the parameters at intervals of 0.10 (10% scale change or
6 degree rotation), since this will result in a sample point within 0.05 of each point in
the search space.

When applied to gradient images, this sampling performs less well. While the
gradients are like the entropies, robust to many changes in the image, including a
change in sensor modality, the gradient images do not appear to retain as much
information as the entropy images. The entropy-based method had a better detection
rate on each of the test images examined.

16.5 Results

Figures 16.3 and 16.5–16.8 show the result of applying these techniques to real
images. Figure 16.3 shows an experiment where the exemplar is an image captured
from a helicopter at an elevation of 800 m. The reference image is an orbital image
that encompasses the same location. While the correct location is not obvious to
the human eye, the entropy matching techniques were able to find it using an affine
transformation of the exemplar. Figure 16.1 showed a similar example.

Figures 16.5 and 16.6 show cases where military vehicles were imaged with
both a CCD camera and an FLIR (infrared) camera. In both cases, the exemplar
used is the infrared image and a regular image is the reference image. In both cases,
the correct position of the exemplar was found, despite the considerable change in
appearance between the images. These examples illustrate that successful extraction
can be performed even when the exemplar has a very different appearance from
the image to which it is matched. The entropy matching technique succeeds despite
camouflage that is not apparent in the infrared image.
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Fig. 16.5. Exemplar matching using images with different sensor modality. (a) Tank exemplar
in FLIR image. (b) Extracted tank location in a CCD image. (c) Entropy image computed from
(a). (d) Entropy image computed from (b).

The final examples are images from Mars (Figures 16.7 and 16.8). Both templates
and reference images were captured with the Imager for Mars Pathfinder (IMP) cam-
eras. The images were captured at different times during the day, so the illumination
and the shadowing of the terrain are different between the images. In Figure 16.7,
the reference image has undergone a nonlinear warping operation to remove lens
distortion, while the template has not. The matching algorithm found the correct
match in both cases, despite the differing appearance of the object in the reference
image.

16.6 Large Image Databases

Our methodology yields good results for matching in a small collection of images, but
it is likely to be prohibitively expensive when matching against a very large database
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Fig. 16.6. Exemplar matching using FLIR and CCD camera images. (a) FLIR image of military
vehicles. (b) Registered location in a CCD image. (c) Entropy image computed from (a). (d)
Entropy image computed from (b).

of images and video. A promising technique for this case is guaranteed search for
image matching [5, 23]. This method is able to prune large sections of the search
space using little computation. These techniques have not, yet, been applied to image
matching using statistical measures, such as mutual information or entropy matching.
However, previous work on entropy matching [4] can be framed as a multiresolution
search problem, making such techniques feasible.

Video databases with both spatial and temporal properties are even more com-
plicated. One approach that has been suggested is the use of 3D strings in the x, y,
and time dimensions [24]. Liu and Chen [25] use three-dimensional pattern matching
techniques for this purpose. Their approach scales linearly with the number of video
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Fig. 16.7. Exemplar matching of Martian images under differing illumination. (a) Image of a
Martian rock. (b) Detected location of the rock in another image. (c) Entropy image computed
from (a). (d) Entropy image computed from (b).

objects. To achieve efficient operations on very large databases, it will be necessary to
obtain a sublinear relationship with the number of video objects. This may be achieved
using a hierarchy of video objects. The top of the hierarchy would be coarse, but would
allow many video objects to be removed from consideration. Lower levels of the hi-
erarchy would add detail and remove more video objects, until the remaining video
objects could be examined explicitly.

This hierarchical methodology is similar to work in object recognition that uses a
hierarchy of positions in the space of object positions (i.e., the pose space) [26–28].
At the upper levels of the hierarchy, the method tries to prove that each cell of the pose
space cannot contain a position meeting the search criteria. If successful for some
cell, the entire cell can be removed from the search. Otherwise, the cell is subdivided
into smaller cells (lower in the hierarchy) and the process is applied recursively. This
technique succeeds since it never prunes a cell that could contain a position meeting
the search criteria. Application of similar ideas to video databases has the potential
to yield gains in efficiency when dealing with large databases.
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Fig. 16.8. Exemplar matching of Martian images under differing illumination. (a) Image of
a Martian rock. (b) Detected location of rock in another image. (c) Entropy image computed
from (a). (d) Entropy image computed from (b).

16.7 Future Work

In addition to research to find highly efficient search strategies for matching against
exemplars, we have identified two other important areas for future work: highly robust
tracking in video images and grouping of extracted objects.

16.7.1 Tracking

Tracking objects in video is easier than detecting them. However, highly robust meth-
ods are necessary to maintain query integrity. It is unacceptable for the tracking
procedure to be fooled into locking onto a background object or drift off the correct
target. Since the tracked object will change appearance over the course of the video
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sequence, the template used to track the object must be periodically (or continually)
updated. However, each time the template is updated, the target on which the template
is centered drifts slightly from the desired position.

For the tracking to be successful over a long sequence, localization must be
performed with high precision each time the template is updated. One approach is
to compute the motion not just relative to the previous frame, but to use a set of
previous frames [29]. This approach might be strengthened using a robust template
matching framework and high-precision subpixel estimation techniques [5]. Another
modification would be to update the target template only when necessary, to reduce
the opportunities for drift. The decision of when to update the target template can
be determined using a quality of match measure between the current template and
video frame. For example, we may decide that the template must be updated when
an estimate of the standard deviation in the localization or the probability of failure
has risen above a predetermined value.

16.7.2 Grouping

If objects are mined from video using exemplars, then the identity of the objects is
known and they are easily grouped according to the exemplar that generated them.
Alternatively, techniques can be integrated into this framework that do not use ex-
emplars. In addition, techniques for applications such as face recognition may use
general face exemplars, without distinguishing between faces belonging to different
people. For cases where there is no obvious partitioning of the detected objects, we
wish to classify the objects according to meaningful characteristics. In addition, in
a video containing people, we should be able to detect cases where a particular face
leaves the image sequence and subsequently returns. This requires grouping the de-
tected face instances according to the appearance of each face, rather than classifying
them as different objects.

An initial approach to matching separate face images, while allowing differences
in lighting and affine transformation, could use techniques similar to the problem
of extraction using exemplars [4, 5]. With this methodology, the extracted objects
(such as faces) are treated as exemplars for matching against other extracted objects.
For highly nonplanar objects, this approach can be extended to use shape information
inferred from the object class and image. For example, the three-dimensional structure
of a face can be well approximated using a small number of parameters extracted from
an image of the face. This shape information can be used to improve the robustness
of matching between two images of a face observed from different viewpoints, since
a nonlinear image warping making use of the shape information brings the images
into better alignment.

16.8 Summary

Our goal in this work is to demonstrate that the data can be mined from image and
video databases by performing matching against exemplars. The technique that we
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use for matching is based on comparing the local entropies in the images at some
relative position that can encompass translation, rotation, scaling, and skew. This
allows matches to be detected even when the images are taken by different sensors and
from different viewpoints. Search strategies for performing matching are currently
efficient for small collections of images. We have suggested techniques for future
work that may lead to efficient search in large databases.
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Heterogeneous Data Using Neural Expert
Networks
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Summary. Artificial neural networks (ANN) have proven to be successful in uncovering

patterns in multidimensional data sets, and are therefore natural candidates for data mining tasks

over domains such as multimedia in which heterogeneous data sources occur. However, training

of a standard fully connected ANN is slow. We present a neural experts ANN architecture that

enables faster ANN training for data sets that can be decomposed into loosely interacting sets

of attributes. We precisely describe the expressiveness of this architecture in terms of functional

composition. Our experimental results show that our neural experts architecture can achieve

classification performance that is statistically identical to that of a fully connected feedforward

ANN while significantly improving training efficiency.

17.1 Introduction

Artificial neural networks (ANN) are a machine learning paradigm that has been
used to successfully tackle difficult data mining tasks involving complex data. For
example, in [1], an ANN classifier is applied to the problem of detecting tumors in
digital mammography images; in [2], ANN are used for text mining, in order to extract
“typical messages” from e-mail discussions in a computer–supported collaborative
work environment; in [3], a hybrid technique that combines ANN with rule-based
inference is used to detect genes in DNA sequences; in [4], neural networks are used
to automatically detect faces in images. Several industrial applications of ANN are
described in [5]. A recent collection of papers on ANN techniques for multimedia
data processing is available in [6]. The success of ANN across such a wide variety of
tasks is explained at least in part by theoretical universal approximation results that
show that ANN can approximate arbitrary nonlinear mappings from inputs to outputs
as closely as desired, see e.g. [7–9]; see also [10] for a survey of related universal
approximation results.

17.1.1 Scope of the Chapter

The present chapter explores the use of ANN as a data mining technique for data that
originate from heterogeneous sources, as occurs naturally in many contexts, including

340
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multimedia data mining [11, 12].We are concerned, in particular, with reducing the
complexity of training ANN for use in classification and regression tasks in such
situations. Toward this end, we employ a modular ANN architecture that is adapted
to multisource data. In this architecture, which we call a mixture of attribute experts,
the set of input attributes (or a set of features extracted from the input attributes) is
partitioned into disjoint subsets corresponding to data sources. Each of these subsets
is fed into a dedicated expert consisting of a single layer of processing units, and the
outputs of the different experts are then combined in a separate output layer. As we
will show, this reduces the number of network connections and the time required for
network training. On the other hand, the reduced complexity of mixture of attribute
experts networks leads to a potential reduction in expressiveness for some data sets,
depending on how the set of input attributes is partitioned into subsets corresponding
to sources/experts. The main requirement on the partition in order to allow good
performance is that only “loose” interactions be needed across sources to predict
the target attribute. The input data sources need not be selected to correspond with
distinct data types (e.g., images, speech, video) that might be present in a multimedia
context. Our technique may be applied profitably to iterative supervised ANN learning
algorithms such as, but not limited to, the classical error backpropagation algorithm.

Our experimental results for the Internet Advertisements and Spambase data sets
from the UCI Machine Learning Repository [13] show that the mixture of attribute
experts architecture can achieve classification performance comparable to that of
a standard fully connected feedforward ANN while allowing significantly faster
training.

17.1.2 Related Work

Modular ANN architectures have been considered previously by several authors. For
example, a collection of papers dealing with modular ANN appeared in [14]. One of
the most important and best known modular ANN paradigms is that of hierarchical
mixtures of experts (HME) of Jacobs et al. [15]. In HME as presented in [15], the
experts are feedforward ANN. Each expert operates on the full set of input attributes.
Separate gating networks, also feedforward ANN that receive all of the attributes
as inputs, are used to implement a “soft partition” of the input space into regions
corresponding to experts; the outputs of a layer of experts are weighted as dictated
by the gating networks, and the combined output is fed into the next layer. Jacobs
et al. [15] evaluated HME for a vowel recognition task, with good results. An HME
approach based on [15] has been applied to text categorization [16]. In contrast with
HME, in the approach of the present chapter it is the set of data attributes that is
partitioned, not the input space that has the set of all attributes as coordinates. In
our approach no two experts share any input attributes. This results in a significant
reduction in the total number of network connections that emanate from the input
layer. This reduction has a beneficial effect on training time but may lead to a loss of
representational power if the target task requires strong interactions among attributes
in different cells of the input partition.
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An interesting application using modular ANN is considered in [17]. There are
two key differences between [17] and the approach of the present chapter. Each expert
in [17] is trained to recognize a specific value of the target (class) attribute, while in
the present chapter we associate experts with partitions of the set of input attributes.
Moreover, Petrushin [17] is concerned mainly with the classification performance of
various approaches in the target domain of emotion recognition in speech and, in terms
of the architecture described, focuses on classification accuracy. In contrast, we will,
in the present chapter explicitly address also issues of efficiency and representational
limitations associated with the system architecture.

It has long been recognized that reducing network complexity in ANN is desirable
to reduce training time and improve generalization performance. One technique for
reducing network complexity is that of “optimal brain damage” (OBD) proposed by
LeCun et al. [18], in which some measure of “saliency” is used to delete selected
network connections during training. Saliency of a given connection is measured
simply by the magnitude of the corresponding weight, or, as proposed in [18], by
using estimates of the second derivatives of the error function with respect to the
connection weights. A key difference between the approach of the present chapter
and OBD as proposed in [18] is that OBD reduces network complexity iteratively:
training commences with a fully connected topology and weights are considered for
deletion only after sufficiently many training iterations have been completed. OBD
has the possible advantage of producing a simplified network structure that is adapted
to the target task. On the other hand, OBD will also require greater training time than
the mixture of attribute experts approach of the present paper because the complexity
of the intermediate networks during OBD training is greater than that of the final
network that results from the iterative deletion process.

17.1.3 Outline of the Chapter

Our chapter begins with a description of ANN in general and of the mixture of attribute
experts topology in particular. We discuss representational and complexity issues for
this topology and contrast it with the standard fully connected feedforward topology.
We describe the representational power of mixture of attribute experts networks in
terms of functional composition, and prove that these networks do not satisfy the
universal approximation property of fully connected feedforward networks. Instead,
representability of a target mapping by a mixture of attribute experts network depends
on whether the mapping can be expressed as a composition in a special factored
form that reflects the structure of the network. This leaves open the issue of whether
such a factorization is feasible in practical situations. To investigate this issue, we
compare the performance of mixture of attribute experts ANN and fully connected
feedforward ANN architectures in the context of detecting advertisements in images
embedded in web documents and of detecting unsolicited commercial e-mail, using
the Internet Advertisements and Spambase data sets from the UCI Machine Learning
Repository [13]. We present our experimental results over these data sets, which
show that mixture of attribute experts networks can achieve the same classification
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performance as fully connected networks while training in less time. We close with
conclusions and suggestions for future work.

17.2 Artificial Neural Networks

Artificial neural networks (ANN) are models of distributed computing by a network
of very simple processing units. The concept of an ANN is inspired by the view of the
brain as a system of interconnected neurons. Among several alternative ANN models,
we will focus on multilayer perceptrons. Formally, a typical feedforward multilayer
perceptron can be defined by a weighted directed acyclic graph (G, E, w). The nodes
of G are the processing units. The state of each processing unit i is described by its
activation value, usually assumed to be a real-valued function of time. The weights
wi, j attached to the edges E( j, i) (from unit j to unit i) measure the relative importance
of the activations of various units j in determining the activation of unit i .

We will assume a memoryless model in which the activation yi of node i at a given
time is an instantaneous function of the activation values y j at the same time of all
nodes j for which the weight wi, j is nonzero. Specifically, we assume the activation yi

to be the result of applying a nonlinear activation function f to a linear combination
of the activations y j :

yi = f

(∑
j

wi, j y j

)
(17.1)

The activation function f is assumed to be a logistic, or sigmoid function:

f (x) = 1

1 + e−σ x
, (17.2)

where σ is a “steepness” parameter. Models with activation memory could also be
considered, by allowing the evolution of the activation values to be described instead
by integrodifferential equations. It is important to note that the memoryless activation
assumption most certainly does not preclude learning in the system. Rather, learning is
associated with changes in the weights between processing units, as described below
in Section 17.2.2.

17.2.1 Network Topologies

The pattern of interconnections among processing units in an ANN is known as the
topology of the network. Together with the numerical values of the connection weights,
the topology plays a key role in determining the behavior of the network. We will
consider two different network topologies, each corresponding to a feedforward ANN
structure with two layers of processing units. In both of the topologies considered,
there are distinct sets of special input and output units. The network inputs feed
directly into the units of the first, or hidden layer, and the hidden units feed into the
units of the second, or output layer.
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Input

Hidden

Output

Fig. 17.1. Fully connected network.

Such an ANN may be viewed as computing a mapping from inputs to outputs.
The precise mapping computed by an ANN depends also on the values of the con-
nection weights, which are determined through supervised learning as discussed in
Section 17.2.2.

17.2.1.1 Fully Connected Topology

Figure 17.1 shows the standard network topology in this context, the fully connected
(FC) topology. In an FC network, every input is connected to every hidden unit, and
every hidden unit is connected to every output unit.

17.2.1.2 Mixture of Attribute Experts Topology

We introduce a second network topology which we call a mixture of attribute experts
(MAE). In this topology, the set of inputs and the units of the hidden layer are
partitioned into k disjoint groups. The groups in the hidden layer are called experts.
Each of the experts will process data from a different source. Each expert is fully
connected to its corresponding set of inputs, but is disconnected from the remaining
inputs. The hidden layer is fully connected to the output layer. Figure 17.2 shows a

Input

Hidden

Output

Expert

Fig. 17.2. Mixture of experts network.
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mixture of attribute experts network with two experts. As discussed in the Introduction,
our mixture of attribute experts architecture differs from the hierarchical mixture of
experts architecture described in [15]; in the latter, all inputs are fed into each expert,
and separate gating networks are used to effect the mixture of the experts’ outputs.

17.2.2 Network Training

The purpose of ANN training (supervised learning) is to adjust the values of the
connection weights between processing units so as to approximate a given target
mapping that is implicit in a set of training data. Supervised learning algorithms
require that a set of training pairs (Ik, Ôk) be presented to the network to be trained,
where Ik is an input vector and Ôk is the desired output vector corresponding to Ik . The
network weights are adjusted during training so as to reduce the output error, that is,
some measure of dissimilarity between the desired outputs Ôk and the actual outputs
Ok produced by the network on input Ik . This training process is often performed in
an iterative fashion: training instances are examined sequentially and the values of
the connection weights are updated after each instance is processed. Multiple passes
over the entire set of training data are typically needed.

The best known iterative ANN supervised learning algorithm is the method of
error backpropagation (see e.g. [19]), which is described in pseudocode below. The
manner in which error backpropagation adjusts the network weights corresponds to
a gradient search in weight space relative to the mean square error between actual
and desired outputs. The term error back–propagation is derived from the recursive
form of the δ equations in the pseudocode; the errors ek at the output layer are “prop-
agated back” through previous layers by Eq. 17.3. Many alternative ANN supervised
learning algorithms are available, including RPROP [20] and QuickProp [21]. The
experimental results presented in Section 17.5 were obtained using error backpropaga-
tion. Nonetheless, the analysis in Section 17.3 suggests that the efficiency advantage
of the mixture of experts architecture presented here may extend to other iterative
ANN training algorithms.

17.2.2.1 Error Backpropagation Pseudocode

1. Pseudo–randomly initialize the network weights.
2. Repeat steps (a)–(d) below until the termination condition is satisfied:

(a) Present the next training instance pair (Ik, Ôk) consisting of inputs Ik and target
outputs Ôk to the network.

(b) Propagate the inputs Ik forward toward the output layer by repeatedly applying
Eq. 17.1.

(c) Compute δ values for all output nodes and hidden nodes, as follows. For each
output node k and each hidden node h:

ek = Ôk − Ok

δk = Ok(1 − Ok)ek (17.3)

δh = yh(1 − yh)
∑

outputs k

wk←hδk
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Here, yh is the activation level of node h, and wk←h is the current value of the
connection weight from node h to node k.

(d) Update the weights for all pairs of nodes using the δ values as follows (η is the
learning rate):

new w j←i = old w j←i + ηδ j yi (17.4)

Termination Criteria

Various termination conditions may be used. For example, training can be terminated
when the error over some reserved validation set of instances has not decreased for
a certain number of iterations. If the initial weights happen to be chosen sufficiently
close to a particular local minimum of the output error, and if the learning rate η is
sufficiently small, then error backpropagation is guaranteed to produce a sequence of
weights that converges to this local minimum. Nonglobal optimality may be addressed
by comparing the results of error backpropagation for different pseudorandom choices
of the initial weights. For example, an automatic random restarting mechanism may
be considered [21–23].

17.3 Efficiency and Expressiveness

In this section we discuss how MAE and FC networks compare in terms of the time
required for training and of the generality with which they can accurately represent
functional relationships among the input and target attributes. The reduced network
complexity of MAE networks can be expected to allow faster training. On the other
hand, we show that MAE networks do not satisfy the universal approximation property
of FC networks and that a loosely interacting partition of the input attributes is needed
in order for an MAE network to accurately represent a given target function.

17.3.1 Time Complexity of Training

Neural network learning may be viewed concretely as a search for suitable vectors
in the space of connection weights. Since an MAE network has fewer connections
than an FC network with the same number of hidden nodes, the MAE network will
usually train faster. Indeed, the total training time in an iterative supervised learning
algorithm such as error back–propagation (see Section 17.2.2.1) or QuickProp [21] is
proportional to the number of weight updates; the number of weight updates in turn
equals the product of the number of network connections and the number of training
iterations required for convergence.

17.3.1.1 Network Complexity

It is straightforward to calculate the number of network connections in each of the
two architectures. The number of inputs is generally much larger than the number of
hidden and output nodes of the network, so connections between the input and hidden
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layers dominate the overall count. Since in the FC architecture there is one weight
for each pair consisting of an input attribute and a hidden node, the total number of
weights between the input and hidden layers in the FC architecture is the product nh
of the number of input attributes n and the number of hidden nodes h. For the MAE
architecture with k experts of roughly equal sizes, each input is connected to about
h/k hidden nodes, so the number of weights from the input layer to the hidden layer
is roughly nh/k. Therefore, the MAE architecture can reduce the number of network
connections by a factor roughly equal to the number of experts. If the experts are of
different sizes, efficiency will improve by a smaller factor.

17.3.1.2 Number of Training Iterations

It is difficult to provide precise a priori estimates of the number of iterations required
for convergence of the training algorithm. This is because of the complex nature of
the error surface, that is, the surface described by the function that maps a vector
of connection weight values to the mean square error attained by the corresponding
network with respect to a given set of training data. Indeed, the very space of weights
over which the error surface is defined is different for FC and MAE. Evidence that
such differences in the error surfaces can be significant is provided by some of the
experimental results in Section 17.5. However, our results do not point to any penalty
in the training time required for MAE as compared with FC. Some of our experiments
in a different domain, that of combined collaborative and content-based information
for personalized item recommendations [22] have shown a distribution of training
times for the mixture of attribute experts architecture that has a heavier tail than that
of the fully connected architecture. This has led us to propose a random restarting
technique in [22] that brings the average number of training iterations closer for the
two architectures in such situations, thereby allowing the reduction in the number of
network connections associated with the mixture of attribute experts architecture to
be reflected in a similar reduction in the overall time complexity of training.

17.3.2 Expressive Power

There is a difference in the intrinsic complexities of the learning tasks for FC and
MAE which may be understood in terms of the relative dimensions of the spaces in
which learning takes place. For either architecture, the target of learning is a function
from the n–dimensional Euclidean space R

n to the y–dimensional Euclidean space
R

y , where n is the number of inputs and y is the number of outputs. However, each
of the two architectures explores a different portion of this function space as we point
out below. As a result, MAE networks achieve improved time efficiency as discussed
above. However, the set of functions that they can represent is constrained.

We will now describe the representational power of MAE networks in terms of
functional composition. We show that not all input–output mappings can be repre-
sented in the special factored MAE form. Furthermore, we will show that this behavior
persists in the limit, in the sense that any function that can merely be approximated
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by MAE input–output mappings must also be expressible in the factored MAE form.
We then briefly discuss the practical implications of this expressive limitation.

17.3.2.1 MAE Networks and Factorization

Consider an MAE architecture with k experts, in which the i-th expert has ni inputs
and hi hidden nodes, and a FC architecture with the same total number of inputs n =∑k

i=1 ni and the same total number of hidden nodes h = ∑k
i=1 hi . The FC network

targets a general function from R
n to R

y expressed as a composition

f (g(x1, . . . , xn))

of a function g : R
n → R

h and a function f : R
h → R

y . This claim is substantiated
by the universality results for multilayer ANN (e.g. [7–10]) which in this context
essentially state that any nonlinear function from R

n to R
y may be approximated

arbitrarily closely by a FC network with the given structure.
On the other hand, because of the grouping of inputs and hidden nodes into k

mutually noninteracting experts, the input–output mapping of the MAE network will
necessarily have the following more restricted factored form

f
(

g1(x (1)
1 . . . x (1)

n1
), . . . , gk(x (h)

1 . . . x (h)
nh

)
)

(17.5)

Here, gi represents the i-th expert, and hence is a function gi : R
ni → R

hi , where ni

is the number of inputs assigned to expert i and hi is the number of hidden nodes in
expert i . The “outer” function f : R

h → R
y maps the hidden unit activations to the

network outputs.
Notice that the space of the outer functions f : R

h → R
y is the same for both the

FC and MAE networks, since the total number of hidden nodes h and the total number
of outputs y is the same in both cases. However, while training of the FC network
amounts to a search for a single g in the nh-dimensional space of all functions from R

n

to R
h , training of the MAE network will instead perform k searches for g1 through gk ,

with the i-th search taking place in the ni hi -dimensional space of functions from R
ni

to R
hi . Since the former (FC) space has higher dimensionality, the FC architecture,

and indeed any method that will potentially consider the full function space, has a
more complex task to consider than does MAE or any other factorization method. One
consequence of this is that MAE trains more quickly than FC. Another consequence,
however, is a reduction in the expressive power of MAE, as we now show.

17.3.2.2 A Function That Cannot be Factored in MAE Form

Intuitively, the fact that there are groups of inputs that feed into different experts
makes it difficult for an MAE network to model relationships across such input groups
exactly. We will show that this is indeed true, by showing that there are functions of
m + n variables that cannot be expressed in the MAE form of Eq. 17.5 corresponding
to two experts that have, respectively, m and n inputs.

We consider the specific case m = 2, n = 2, and assume that the partition of the
input attributes into experts is predetermined, with (x1, x2) and (x ′

1, x ′
2) as the two
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halves. We focus on functions of the form φ(x1x ′
1, x2x ′

2), where φ is a nonconstant
function and the arguments are products of one variable from each of two “halves”
of the input vector. Specifically, take the example in which φ is the sum operator, so
that the target function is (x1, x2, x ′

1, x ′
2) �→ x1x ′

1 + x2x ′
2.

In order for this particular target function to equal the MAE composition
f (g(x1, x2), g′(x ′

1, x ′
2)), the following four conditions must hold:

x1 = f (g(x1, x2), g′(1, 0)) ⇒ g(x1, x2) is independent of x2

x2 = f (g(x1, x2), g′(0, 1)) ⇒ g(x1, x2) is independent of x1

x ′
1 = f (g(1, 0), g′(x ′

1, x ′
2)) ⇒ g′(x ′

1, x ′
2) is independent of x ′

2

x ′
2 = f (g(0, 1), g′(x ′

1, x ′
2)) ⇒ g′(x ′

1, x ′
2) is independent of x ′

1

Taken together, the above conditions imply that the selected target function x1x ′
1 +

x2x ′
2 must be constant, but of course it is not. This contradiction shows that the target

function in question is not expressible by an MAE network.

17.3.2.3 Non–Universality: Limits of MAE Mappings

We now show that the requirement imposed by the factored MAE form of Eq. 17.5
persists in the limit, that is, mappings that can be approximated by input-to-output
mappings of MAE networks must also have the form of Eq. 17.5. In particular, since
there are functions that cannot be expressed in this form as shown above in Sec-
tion 17.3.2, this establishes that the universal approximation property of FC networks
does not carry over to MAE networks. We will assume that network processing units
have activation functions with uniformly bounded slope. The crucial consequence
of this assumption is that the associated input–output transfer functions form an
equicontinuous family.

Theorem 17.1. Let φ be any function defined on a domain D consisting of a product
of finitely many compact real intervals. Assume that φ can be uniformly approxi-
mated arbitrarily closely by the input–output mappings of MAE networks with a given
(shared) topology as in Eq. 17.5. Then φ may itself be expressed as a composition of
continuous functions on D in the form of Eq. 17.5.

Proof. Given an approximating sequence φm, m = 1, . . . ,∞ of composite functions
of the form

φm(x) = f m
(

gm
1(x (1)

1 . . . x (1)
n1

), . . . , gm
k(x (k)

1 . . . x (k)
nk

)
)

,

by the assumption that the nodal activation functions of all networks considered have
a slope that is bounded by some finite shared constant, the family of functions (gm

i ) is
equicontinuous. This means that if some target oscillation bound ε > 0 is specified,
then a radius δ > 0 exists such that all of the functions gm

i oscillate by less than ε

when their arguments oscillate by less than δ. The same statement is true about the
outer functions f m . Equicontinuity (see [24]) yields a subsequence of indices m for
which the corresponding functions gm

i (for fixed i) and f m converge uniformly on
their respective compact domains as m goes to infinity, and the limit functions gi
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(fixed i) and f are continuous. Also, the limit of the composite functions, which
equals φ by our initial assumption, is expressible as the composition

φ(x) = f
(

g1(x (1)
1 . . . x (1)

n1
), . . . , gk(x (k)

1 . . . x (k)
nk

)
)

of the limiting functions f and gi . This completes the proof.

17.3.2.4 Loose Interactions: Factored Universality

Because of the non-universality of MAE networks as demonstrated above, the suc-
cess of an MAE approach in a particular context will depend on the possibility of
partitioning the set of input attributes in a way that allows the target function to be
well approximated by factored MAE functions relative to the selected input partition.
We informally say that the target function involves only loose interactions among
attributes in different groups of such a partition. The meaning of “loose” may be
made more precise by noting that the space of attainable target functions should be as
described by Eq. 17.5. Thus, if the terms in Eq. 17.5 are standard sigmoids operating
on linear combinations as in Eqs. 17.1 and 17.2, then we see that the mappings that
can be represented through loose interactions will include those that can be approxi-
mated by linear combinations of sigmoids over the input attributes in different cells
of the partition. If the experts are themselves allowed to be multilayer perceptrons,
then it is possible to prove that the resulting MAE networks have the factored uni-
versal approximation property of approximating any mapping that can be expressed
in a factored form similar to that of Eq. 17.5 (without restricting the terms to linear
combinations of sigmoids) arbitrarily closely [25]. Our chapter [25] describes more
general versions of the factored universality property for arbitrary modular networks.

The issue of what data set properties guarantee that the target function may be
expressed in terms of some loosely interacting partition of the set of input attributes
is an important one. The experimental results described in the present chapter, in
which MAE networks achieved the same classification performance as FC networks,
suggest that the loose interactions requirement may occur in some multimedia data
mining applications. Another domain in which such a data partition appears to occur
naturally is that of information filtering or recommendation based on a combination
of social (collaborative) and content information; we have obtained promising results
in this domain using the approach of the present chapter [22].

17.4 Experimental Evaluation

In this section we describe the experimental setup that we used to compare the fully
connected (FC) and mixture of attribute experts (MAE) network architectures. Most
of the experiments were performed over the Internet Advertisements data set [26].
This section describes details of this data set, the FC and MAE network configurations
that were used (including the partition of the input attributes into experts in the case of
MAE), performance metrics, and the experimental protocol. Results for the Internet
Advertisements data set appear in Section 17.5. Additional experiments using the
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Spambase spam e-mail data set [13] were also performed. The experimental setup
and results for this second data set are reported in Section 17.5.4.

17.4.1 Web Images Data

We used the Internet Advertisements data set [26], available through the UCI Ma-
chine Learning Repository [13]. The 3279 instances of this data set represent images
embedded in Web pages; roughly 14% of these images contain advertisements and
the rest do not. There are missing values in approximately 28% of the instances. The
proposed task is to determine which instances contain advertisements based on 1557
other attributes related to image dimensions, phrases in the URL of the document or
the image, and text occurring in or near the image’s anchor tag in the document.

17.4.1.1 Attributes

A description of the attributes for the Internet Advertisements data set appears below
as presented in the data set’s summary page at the UCI Machine Learning Reposi-
tory [13]. The first three attributes encode the image’s geometry; aratio refers to the
aspect ratio (ratio of width to height). The binary local feature indicates whether the
image URL points to a server in the same Internet domain as the document URL. The
remaining features are based on phrases in various parts of the document; the terms
origurl, ancurl, alt refer respectively to the document URL, anchor (image) URL, and
alt text in the anchor tag for the image. Finally, the class attribute determines whether
a given instance is an ad or not. See [26].

1. height: continuous. } possibly missing
2. width: continuous. } possibly missing
3. aratio: continuous. } possibly missing
4. local: 0,1.
5. 457 features from url terms,

each of the form “url*term1+term2...”;
for example: url*images+buttons: 0,1.

6. 495 features from origurl terms, in same form;
for example: origurl*labyrinth: 0,1.

7. 472 features from ancurl terms, in same form;
for example: ancurl*search+direct: 0,1.

8. 111 features from alt terms, in same form;
for example: alt*your: 0,1.

9. 19 features from caption terms, in same form;
for example: caption*and: 0,1.

10. class attribute: ad/nonad

17.4.1.2 Input Partition

Applying a mixture of attribute experts network to the above data requires that the
set of non-class attributes be split into disjoint subsets to be used as inputs for the
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respective experts. We will adopt the simplest possible approach to this task here
by using a natural grouping present in the list above. The first four attributes in the
enumeration will constitute the first group. Each of the other items in the enumeration
except for the target attribute will be a group also. Thus, we will have six experts in
all, corresponding to the following groups of input attributes:

1. Image geometry
2. Phrases in image’s URL
3. Phrases in base URL
4. Phrases in anchor URL
5. Phrases in alt text
6. Phrases in caption

17.4.1.3 Feature Extraction

We preprocess the input attribute vectors, using the singular value decomposition
(SVD). The SVD reduces the dimensionality of the data and provides a good set of
features for supervised learning. This allows training to be completed more quickly
and enhances classification performance of both the fully connected and mixture
of attribute experts networks. We apply the SVD to each expert’s group of input
attributes separately so that both the fully connected and the mixture of attribute
experts architectures operate on the same input data. Only groups 2–5 in the list
above were processed using SVD. We are able to halve the number of attributes by
keeping only the largest singular values after applying the SVD, discarding those
that contain a total of 1% or less of the “energy.” That is, if the singular values are
σ1 ≥ σ2 ≥ · · · σN , then we keep σ1 · · · σn , where n is the smallest integer such that∑N

j=n+1 σ 2
j∑N

j=1 σ 2
j

< 0.01

The effect of SVD on the size of the input attribute groups is summarized in Table 17.1.

17.4.2 Networks

17.4.2.1 Mixture of Attribute Experts Module

We used the implementation of error backpropagation for feedforward neural net-
works provided in the Weka 3 system [27]. We implemented the mixture of attribute
experts architecture as a new module, ExpertNetwork, which we added to the Weka
neural network module. The new module was included in the weka.classifiers.neural
directory together with the standard Weka modules and may be accessed through

Table 17.1. Attribute count before and after SVD

Geom URL OrURL AncURL Alt Capt

Before 4 457 495 472 111 19

After 4 265 196 279 107 19
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Fig. 17.3. Fully connected network.

the Weka GUI. The new module allows one to set the structure of the network by
assigning only specific inputs to the hidden neurons. As an example, one can assign
the first 2000 inputs to one neuron and the following 3000 inputs to two other neurons
by typing [2000,1][3000,2] in the expertString field.1 We also added the capability of
tracking the precision and the accuracy of a network output every certain number of
iterations as specified by the user. One can specify the file to write this information to
in the precAccFile field, and the number of iterations between writings in the precAc-
cPerIter field.2 Finally, we added the capability of writing the final network outputs
for each test instance to a file. The module uses the first input as an ID so that one
can track whether there are any trends in the network outputs. One trick for giving
a reasonable ID to the module is to embed the ID into the data as the first attribute,
and then assign 0 hidden neurons ([1,0]. . . ) to the first input so that it does not affect
network training.

17.4.2.2 Network Configurations

We consider two basic architectures: a standard fully connected feedforward network
as depicted in Figure 17.3, and a mixture of attribute experts network as shown in
Figure 17.4. Note that the precise numbers of attributes within input groups appear
in the second row of Table 17.1.

In both architectures, two output nodes are used, each corresponding to one of
the possible values of the class attribute (ad, nonad); the classification decision for a
given input instance is determined by selecting the output with the greatest numerical
value for that instance. We consider fully connected networks with 2, 3, and 6 hidden
nodes, and mixture of attribute experts networks with either 1 or 2 nodes per expert.3

The number of experts is fixed at 6. Network inputs are obtained directly as the output
of SVD preprocessing of the data attributes as explained in Section 17.4.1 above.

1 The number of hidden neurons specified in the expertString field must be lower than or equal
to the number of hidden neurons specified in hiddenLayers field.
2 One must note that specifying this field will affect the training time considerably, and that
one should use the default value to obtain a reliable training time.
3 The “two nodes per expert” MAE architecture has 10 hidden nodes: one for each of the image
geometry and caption terms experts, and two for each of the others.
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Fig. 17.4. Mixture of experts network.

17.4.3 Performance Metrics

Several different metrics were used to evaluate the classification performance and
time efficiency of the various networks, including classification accuracy (fraction
of labeled test instances for which the system’s predicted classification matches the
class label), the F-measure, defined in terms of the information retrieval metrics of
precision (specificity, fraction of true positives among true and false positives) and
recall (coverage, fraction of true positives among true positives and false negatives)
by the formula:

F = 2 ∗ precision ∗ recall

precision + recall
,

and the total training time needed for convergence of the error backpropagation al-
gorithm.

17.4.4 Evaluation Protocol

We employed n-fold cross-validation throughout. The number of folds, n, was either
4 or 10, depending on the experiment. For each experiment, we randomly partitioned
the data into n parts and proceeded to carry out n training and testing trials. For each
of these trials, one of the n parts of the data set was reserved for testing and the
union of the other n − 1 parts was randomly split into a 70% portion used for training
and a 30% portion used as a validation set to determine when to stop training. The
networks were trained using the error backpropagation algorithm with a learning rate
of 0.3 and a momentum coefficient of 0.2. Training continued until 20 consecutive
iterations resulted in no increase in the accuracy as measured over the validation set,
or until a maximum of 2000 training iterations had been carried out. After training
was completed, performance measures were evaluated on the basis of the networks’
performance on the reserved testing part of the data for that trial. The values of the
performance measures were then averaged over the n trials; these averages are the
values that we report here. Statistical significance information was computed using a
large sample normal approximation t test.
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Table 17.2. Classification accuracy

Architecture Mean Median

Fully connected (2 hidden nodes) 0.94 0.96

Fully connected (4 hidden nodes) 0.96 0.96

Fully connected (6 hidden nodes) 0.94 0.96

Experts (1 node per expert) 0.96 0.96

Experts (2 nodes per expert) 0.96 0.96

17.5 Results

This section describes the results of our comparison of the FC and MAE network
architectures using the experimental setup described in the preceding section of the
chapter. The Internet Advertisements data set described in Section 17.4 was used
unless otherwise stated. Results for the Spambase data set appear at the end in Sec-
tion 17.5.4.2.

17.5.1 Classification Performance

Table 17.2 shows the classification accuracy obtained for the different system ar-
chitectures. The evaluation protocol used in this experiment was fourfold cross-
validation. As the figure shows, the accuracy values are very close for all architectures
tested. In fact, the different values are statistically indistinguishable from one another
(P < 0.05).

The similarity in the accuracy values hides a noteworthy difference in the clas-
sification performance of the different networks. This difference becomes apparent
when we examine the observed values of the F-measure in Table 17.3 (computed
using fourfold cross-validation). Although Table 17.3 shows little difference across
architectures in the median values, an appreciable drop is observed in the mean value
of the F-measure for the fully connected architecture with 2 or 6 hidden nodes. The
difference in the mean values of the F-measure across architectures is borderline in
the sense of statistical significance, being not quite large enough to be significant
at the level P < 0.05. Nonetheless, it is interesting to understand the origin of this
phenomenon. It is associated with convergence of the error backpropagation training
algorithm for the fully connected networks to nonglobal minima of the output error
landscape in some of the runs; the resulting classifiers predict the same class (e.g.,
nonad) for all test instances. It is possible that a random restarting version of error
backpropagation [22] would reduce this phenomenon.

Table 17.3. F-measure

Architecture Mean Median

Fully connected (2 hidden nodes) 0.65 0.85

Fully connected (4 hidden nodes) 0.87 0.86

Fully connected (6 hidden nodes) 0.65 0.86

Experts (1 node per expert) 0.85 0.87

Experts (2 nodes per expert) 0.85 0.84
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Table 17.4. Training times (seconds)

Architecture Mean Median

Fully connected (2 hidden nodes) 1532.5 925.3

Fully connected (4 hidden nodes) 2578.8 2167.6

Fully connected (6 hidden nodes) 4243.7 4631.3

Experts (1 node per expert) 1977.2 2324.7

Experts (2 nodes per expert) 890.4 830.5

17.5.2 Time Efficiency

The total time required to train each network over 75% of the set of 3279 instances
is reported in Table 17.4 (fourfold cross-validation). This experiment was performed
in the Weka 3 system with our neural experts module, using JVM version 1.4.1 on a
Pentium–based system with 2.0 GHz clock rate and 256 MB RAM.

Table 17.4 shows that the mixture of attribute experts architecture with two nodes
per expert trained faster than the fully connected architectures. Qualitatively, this
phenomenon appears to be stable. However, we note that the precise training times
depend significantly on the stopping criteria used for training. See the discussion
below for additional comments.

17.5.3 Discussion

The results in Table 17.4 show that the fully connected architecture with four and
six hidden nodes took much longer to train than either of the mixture of attribute
experts architectures, each of which has at least six hidden nodes. Thus, the mixture
of attribute experts architecture provides a more efficient way of making use of the
available computational resources. As Tables 17.2 and 17.3 above show, this time
advantage is achieved without sacrificing classification performance. This supports
the implicit assumption that the chosen assignment of input attributes to experts yields
a “loosely interacting” partition as described in Section 17.3.2.

The only version of the fully connected architecture that trained in a time com-
parable to the slower of the two mixture of attribute experts networks is that with
two hidden nodes. However, Table 17.3 shows that this particular fully connected
network displayed inferior classification performance in the sense of the F-measure
on some of the runs. The fastest training was achieved by the mixture of attribute
experts architecture with two nodes per expert. Remarkably, this architecture trained
even faster than the mixture of attribute experts architecture with only one node per
expert. This may point to differences in the output error landscape that make it more
difficult to find the minimum points in weight space when the experts contain only
one hidden node.

17.5.4 Additional Experimental Results

17.5.4.1 Internet Advertisements Data set

We carried out an additional cross-validation experiment over the Internet Advertise-
ments data set, increasing the number of folds from 4 to 10 in order to better assess the
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Table 17.5. F–measure (10-fold cross-validation)

Architecture Mean Median

Fully connected (3 hidden nodes) 0.79 0.87

Experts (1 node per expert) 0.85 0.86

Experts (2 nodes per expert) 0.87 0.87

statistical stability of the above results. We increased the number of hidden nodes from
10 to 12 in the larger of the MAE architectures4 and compared the results with those
for a fully connected network with 3 hidden nodes. Again, error backpropagation for
the fully connected architecture fails to converge on some runs. This is reflected in a
significantly lower mean value of the F-measure for the fully connected architecture
with 3 hidden nodes in Table 17.5, just as previously observed for the fully connected
architecture with 2 or 6 nodes in Table 17.3. These results provide further support for
the finding that the mixture of attribute experts architecture has better classification
performance in this context.

Table 17.6 shows an increase in the mixture of attribute experts training time
relative to the results in Table 17.4, which is consistent with the increased number
of hidden nodes in the larger of the MAE networks. Nonetheless, the computational
superiority of the mixture of attribute experts architecture with two nodes per expert
is still evident in Table 17.6.

17.5.4.2 Spambase Data Set

Data Set Characteristics

Our final set of experiments used a subset of the Spambase spam e-mail data set from
the UCI Machine Learning Repository [13]. This data set contains 4601 instances
(e-mails), of which 1813 (39.4%) are labeled as spam and the remaining 2788 (60.6%)
are labeled as not spam. Each instance is described by 57 continuous attributes, plus
the spam/no-spam class attribute. There are no missing attribute values. For our
experiments, we extracted a random stratified subsample consisting of 460 instances
of the Spambase data set.

Attributes

The original 57 attributes were used directly. No additional feature extraction or
dimensionality reduction steps were carried out. The attributes are described below
(from the Spambase documentation at the UCI Machine Learning Repository [13]).
The terms WORD and CHAR refer to specific selected words (e.g., “money,” “free,”
“650,” “credit,” “edu”) and characters (′;′ , ′(′, ′[′, ′!′, ′$′, ′#′) that may occur within
an e-mail message.

4 By using 2 hidden nodes instead of 1 for the image geometry and caption terms experts as
well as for the other experts.
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Table 17.6. Training times (second), 10-fold

cross-validation

Architecture Mean Median

Fully connected (3 hidden nodes) 2760.8 2086.9

Experts (1 node per expert) 2676.8 2779.0

Experts (2 nodes per expert) 1568.8 1131.8

1. 48 continuous real [0,100] attributes, word freq WORD = percentage of words in
the e-mail that match WORD, i.e., 100 * (number of times the WORD appears in
the e-mail)/total number of words in e-mail. A “word” in this case is any string of
alphanumeric characters bounded by nonalphanumeric characters or end-of-string.

2. 6 continuous real [0,100] attributes, char freq CHAR = percentage of characters
in the e-mail that match CHAR, i.e., 100 * (number of CHAR occurences)/total
characters in e-mail.

3. 1 continuous real attribute, capital run length average = average length of unin-
terrupted sequences of capital letters.

4. 1 continuous int attribute, capital run length longest = length of longest uninter-
rupted sequence of capital letters.

5. 1 continuous int attribute, capital run length total = sum of length of uninterrupted
sequences of capital letters = total number of capital letters in the e-mail.

6. 1 nominal 0,1 class attribute, spam = denotes whether the e-mail was considered
spam (1) or not (0), i.e., unsolicited commercial e-mail.

Network Configurations: MAE Input Partition

We considered fully connected (FC) and mixture of attribute experts (MAE) neural
networks, in configurations similar to those described for the Internet Advertisements
data set in Section 17.4. MAE networks were implemented in Weka 3 [27] as described
in Section 17.4. Two experts were used for the MAE networks. The first 48 attributes
of the Spambase data set (which comprise item number 1 in the above listing) were
grouped together and assigned to the first expert; the remaining 9 nonclass attributes
were assigned to the second expert. The number of hidden units in the first expert was
either 1 or 3. One hidden unit was used for the second expert in all cases.

Experimental Protocol

Networks were trained using the error backpropagation algorithm with a learning rate
of 0.3 and a momentum of 0.2 until the error over a reserved 30% validation portion of
the data set did not decrease for 20 consecutive training iterations, or until a maximum
of 500 iterations had been carried out. A 10-fold cross-validation protocol was used.
Furthermore, F–measure and training time results were averaged over 10 separate
repetitions of 10-fold cross-validation (a total of 100 runs for each experiment). This
reduces the variance and enables us to more readily gauge statistical significance of
the results using a t test.
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Table 17.7. Spambase F–measure, 10-fold c-v

Architecture Mean Median

Fully connected (2 hidden nodes) 0.84 0.85

Fully connected (4 hidden nodes) 0.84 0.85

Experts (1 node experts) 0.84 0.84

Experts (3 and 1 node experts) 0.83 0.85

Results

Classification quality as gauged by the F-measure is reported in Table 17.7. Training
times appear in Table 17.8. These results for the Spambase data set confirm our
previous findings for the Internet Advertisements data set. First, the MAE and FC
networks achieve essentially the same classification quality (the observed differences
in the F-measure are all statistically insignificant at the level P < 0.05). Convergence
of the error back-propagation learning algorithm to nonglobal local minima, which
was observed for the FC architecture in the case of the Internet Advertisements data
set (see Section 17.5.1) did not occur in the case of the Spambase data set. The second
finding concerns the greater efficiency of the MAE architecture. For both data sets,
the MAE networks train in significantly less time than the FC networks (P < 0.05).

17.6 Conclusions and Future Work

We have presented a mixture of attribute experts neural network architecture that
provides reduced network complexity and improved training efficiency when using
iterative supervised learning techniques for classification tasks involving multiple
loosely coupled data sources. We have provided a description of the representational
power of mixture of attribute experts networks in terms of functional composition,
showing in particular that mixture of attribute experts do not satisfy the universal
approximation property of fully connected networks. Rather, a given target function
can be represented accurately by a mixture of experts network only if the function can
be expressed in terms of functional composition in a way that reflects the partition
of the set of input attributes into groups associated with experts. We have applied
the mixture of attribute experts approach to the task of detecting advertisements in
images embedded in Web pages. In this context, we found that a mixture of attributes
network trained in less time while maintaining the same level of classification per-
formance as a fully connected network operating on the same input data. Thus, the

Table 17.8. Spambase training times (second),

10-fold c-v

Architecture Mean Median

Fully connected (2 hidden nodes) 26.6 29.6

Fully connected (4 hidden nodes) 43.9 49.4

Experts (1 node experts) 17.5 18.3

Experts (3 and 1 node experts) 19.6 12.6
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potential representational limitation of mixture of attribute experts networks does not
manifest itself in this task. Convergence of the error backpropagation algorithm to
nonglobal local minima of the error function was observed in the case of the fully
connected network architecture in some of our experiments. The mixture of attribute
experts architecture did not exhibit this problem. This phenomenon points to qual-
itative differences between the error landscapes for the two architectures. It would
be desirable to understand in detail how the error landscape depends on whether a
mixture of attribute experts is used. For example, does the mixture of attribute ex-
perts architecture reduce the number or depth of local minima on the error surface?
Changes in the error surface will affect all supervised learning algorithms that are
driven by the same error function. This fact, together with the reduced number of
connections in a mixture of attribute experts network as compared with a fully con-
nected network with the same number of processing units, implies that the mixture of
attribute experts architecture should yield efficiency improvements for all such algo-
rithms. An experimental evaluation of the relative efficiency gain and classification
performance of mixture of attribute experts networks for ANN learning techniques
other than error back-propagation would be of interest. As we pointed out, the success
of the mixture of attribute experts approach in a given context depends on whether a
set of input attributes can be found that can be partitioned into subsets with relatively
limited mutual interaction in determining the value of the target attribute. It would
be beneficial to identify domains in which such partitions occur naturally, as well
as feature selection techniques that contribute to this goal in situations in which a
suitable partition cannot easily be identified. The degree to which the advantages of
the mixture of attribute experts approach can be realized may depend on the intrinsic
complexity of the target task. Exploring this issue would be a worthwhile goal for
future work.
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18. A Data Mining Approach to Expressive
Music Performance Modeling

Rafael Ramirez, Amaury Hazan, Esteban Maestre, and Xavier Serra

Summary. In this chapter we present a data mining approach to one of the most challenging
aspects of computer music: modeling the knowledge applied by a musician when performing a
score in order to produce an expressive performance of a piece. We apply data mining techniques
to real performance data (i.e., audio recordings) in order to induce an expressive performance
model. This leads to an expressive performance system consisting of three components: (1)
a melodic transcription component that extracts a set of acoustic features from the audio
recordings, (2) a data mining component that induces an expressive transformation model
from the set of extracted acoustic features, and (3) a melody synthesis component that generates
expressive monophonic output (MIDI or audio) from inexpressive melody descriptions using
the induced expressive transformation model. We describe, explore, and compare different data
mining techniques for inducing the expressive transformation model.

18.1 Introduction

Modeling expressive music performance is one of the most challenging aspects
of computer music that in the past has been studied from different perspectives
(e.g. [2,7,24]). The main approaches to empirically studying expressive performance
have been based on statistical analysis (e.g. [23]), mathematical modelling (e.g. [29]),
and analysis-by-synthesis (e.g. [5]). In all these approaches, it is a person who is re-
sponsible for devising a theory or mathematical model that captures different aspects
of musical expressive performance. The theory or model is later tested on real per-
formance data to determine its accuracy.

This chapter describes a data mining approach to investigate how skilled mu-
sicians (saxophone Jazz players in particular) express and communicate their view
of the musical and emotional content of musical pieces by introducing deviations
and changes of various parameters such as timing and dynamics. The deviations and
changes we consider here are on note duration, note onset, and note energy. The
study of these variations is the basis of an inductive content-based transformation
system for performing expressive transformations on musical phrases. The system
consists of three components: (a) a melodic transcription component that extracts a
symbolic representation of the expressive aspects of a set of audio recordings, (b)

362
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a data mining component that induces an expressive transformation model from the
symbolic representation, and (c) a melody synthesis component that generates ex-
pressive monophonic output (MIDI or audio) from inexpressive melody descriptions
using the induced expressive transformation model. We describe and compare differ-
ent classification and regression data mining techniques for inducing the expressive
transformation model.

The rest of the chapter is organized as follows: Section 18.2 describes the melodic
description component of the system. Section 18.3 describes the different approaches
we have considered for the inductive part of the system and presents a comparison
among them. Section 18.4 briefly describes how the system generates both MIDI and
audio output. Section 18.5 reports on some related work, and finally Section 18.6
presents some conclusions and indicates some areas of future research.

18.2 Melodic Description

In this section, we summarize how we extract a symbolic description from the mono-
phonic recordings of performances of Jazz standards. We need this symbolic repre-
sentation to apply data mining techniques to the data. In this chapter, our interest is
to model note-level transformations such as onset deviations, duration transforma-
tions, and energy variations. Thus, descriptors providing note-level information are
of particular interest.

18.2.1 Algorithms for Feature Extraction

Figure 18.1 represents the steps that are performed to obtain a melodic description
from audio. First of all, we perform a spectral analysis of a portion of sound, called
analysis frame, whose size is a parameter of the algorithm. This spectral analysis lies
in multiplying the audio frame with an appropriate analysis window and performing
a Discrete Fourier Transform (DFT) to obtain its spectrum. In this case, we use a
frame width of 46 ms, an overlap factor of 50%, and a Keiser–Bessel 25 dB window.
Then, we perform a note segmentation using low-level descriptor values. Once the
note boundaries are known, the note descriptors are computed from the low-level and
the fundamental frequency values.

18.2.2 Low-Level Descriptors Computation

The main low-level descriptors used to characterize expressive performance are in-
stantaneous energy and fundamental frequency.

18.2.2.1 Energy Computation

The energy descriptor is computed on the spectral domain, using the values of the
amplitude spectrum at each analysis frame. In addition, energy is computed in different
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Fig. 18.1. Block diagram of the melody descriptor.

frequency bands as defined in [11], and these values are used by the algorithm for
note segmentation.

18.2.2.2 Fundamental Frequency Estimation

For the estimation of the instantaneous fundamental frequency, we use a harmonic
matching model derived from the Two-Way Mismatch procedure (TWM) [13]. For
each fundamental frequency candidate, mismatches between the harmonics generated
and the measured partials frequencies are averaged over a fixed subset of the available
partials. A weighting scheme is used to make the procedure robust to the presence of
noise or absence of certain partials in the spectral data. The solution presented in [13]
employs two mismatch error calculations The first one is based on the frequency
difference between each partial in the measured sequence and its nearest neighbor in
the predicted sequence. The second is based on the mismatch between each harmonic
in the predicted sequence and its nearest partial neighbor in the measured sequence.
This two-way mismatch helps avoid octave errors by applying a penalty for partials
that are present in the measured data but are not predicted, and also for partials whose
presence is predicted but which do not actually appear in the measured sequence.
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Fig. 18.2. Flow diagram of the TWM algorithm.

The TWM mismatch procedure has also the benefit that the effect of any spurious
components or partial missing from the measurement can be counteracted by the
presence of uncorrupted partials in the same frame.

Figure 18.2 shows the block diagram for the fundamental frequency estimator
following a harmonic-matching approach.

First, we perform a spectral analysis of all the windowed frames, as explained
above. Second, the prominent spectral peaks of the spectrum are detected from the
spectrum magnitude. These spectral peaks of the spectrum are defined as the local
maxima of the spectrum whose magnitude is greater than a threshold. The spectral
peaks are compared to a harmonic series and a two-way mismatch (TWM) error
is computed for each fundamental frequency candidates. The candidate with the
minimum error is chosen to be the fundamental frequency estimate.

After a first test of this implementation, some improvements to the original algo-
rithm where implemented to deal with some errors of the algorithm:

� Peak selection: A peak selection routine has been added to eliminate spectral peaks
corresponding to noise. The peak selection is done according to a masking threshold
around each of the maximum magnitude peaks. The form of the masking threshold



P1: OTE/SPH P2: OTE
SVNY295-Petrushin August 16, 2006 19:41

366 Rafael Ramirez et al.

depends on the peak amplitude, and uses three different slopes depending on the
frequency distance to the peak frequency.

� Context awareness: We take into account previous values of the fundamental fre-
quency estimation and instrument dependencies to obtain a more adapted result.

� Noise gate: A noise gate based on some low-level signal descriptor is applied to
detect silences so that the estimation is performed only in nonsilent segments of
the sound.

18.2.3 Note Segmentation

Note segmentation is performed using a set of frame descriptors, which are energy
computation in different frequency bands and fundamental frequency. Energy onsets
are first detected following a band-wise algorithm that uses some psycho-acoustical
knowledge [11]. In a second step, fundamental frequency transitions are also de-
tected. Finally, both results are merged to find the note boundaries (onset and offset
information).

18.2.4 Note Descriptor Computation

We compute note descriptors, using the note boundaries and the low-level descriptors
values. The low-level descriptors associated to a note segment are computed by av-
eraging the frame values within this note segment. Pitch histograms have been used
to compute the pitch note and the fundamental frequency that represents each note
segment, as found in [14]. This is done to avoid taking into account mistaken frames
in the fundamental frequency mean computation.

First, frequency values are converted into cents by the following formula:

c = 1200 ·
log ( f

fref
)

log2
(18.1)

where fref = 8.176. Then, we define histograms with bins of 100 cents and hop size
of 5 cents and we compute the maximum of the histogram to identify the note pitch.
Finally, we compute the frequency mean for all the points that belong to the histogram.
The MIDI pitch is computed by quantization of this fundamental frequency mean over
the frames within the note limits.

18.3 Expressive Performance Knowledge Induction

In this section, we describe different inductive approaches to learning an expressive
performance model from the symbolic representation extracted from a set of mono-
phonic recordings by a skilled saxophone Jazz player. Our aim is to explore different
data mining techniques in order to be able to predict accurately how a particular
note in a particular context should be played (e.g., longer or shorter than its nominal
duration and by how much).
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18.3.1 Training Data

The training data used in our experimental investigations are monophonic recordings
of four Jazz standards (Body and Soul, Once I loved, Like Someone in Love, and
Up Jumped Spring) performed by a professional musician at 11 different tempos
around the nominal tempo. For each piece, the nominal tempo was determined by the
musician as the most natural and comfortable tempo to interpret the piece. Also for
each piece, the musician identified the fastest and slowest tempos at which a piece
could be reasonably interpreted. Interpretations were recorded at regular intervals
around the nominal tempo (five faster and five slower) within the fastest-slowest
tempo limits. The resulting data set is composed of 4360 performed notes. Each
note in the training data is annotated with its corresponding deviations (i.e., duration,
onset, and energy deviations) and a number of attributes representing both properties
of the note itself and some aspects of the musical context in which the note appears.
Information about intrinsic properties of the note includes the note duration and
the note metrical position, while information about its context includes duration of
previous and following notes, extension and direction of the intervals between the note
and the previous and following notes, and the note Narmour structure(s) [16]. The
computation of the Narmour structures of a note is motivated by the fact that musicians
perform music considering a number of abstract structures (e.g., musical phrases). In
this context, we have initially based our musical analysis on the implication/realization
model proposed by Narmour [16, 17].

18.3.2 Musical Analysis

The Implication/Realization model is a theory of perception and cognition of
melodies. The theory states that a melodic musical line continuously causes lis-
teners to generate expectations of how the melody should continue. The nature of
these expectations in an individual are motivated by two types of sources: innate and
learned. According to Narmour, on the one hand, we are all born with innate infor-
mation that suggests to us how a particular melody should continue. On the other
hand, learned factors are due to exposure to music throughout our lives and famil-
iarity with musical styles and particular melodies. According to Narmour, any two
consecutively perceived notes constitute a melodic interval, and if this interval is not
conceived as complete, it is an implicative interval, that is, an interval that implies a
subsequent interval with certain characteristics. That is to say, some notes are more
likely than others to follow the implicative interval. Two main principles recognized
by Narmour concern registral direction and intervallic difference. The principle of
registral direction states that small intervals imply an interval in the same registral
direction (a small upward interval implies another upward interval and analogously
for downward intervals), and large intervals imply a change in registral direction (a
large upward interval implies a downward interval and analogously for downward
intervals). The principle of intervallic difference states that a small (five semitones
or less) interval implies a similarly sized interval (plus or minus two semitones), and
a large interval (seven semitones or more) implies a smaller interval. Based on these
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Fig. 18.3. Prototypical Narmour structures.

two principles, melodic patterns or groups can be identified that either satisfy or vio-
late the implication as predicted by the principles. Such patterns are called structures
and are labeled to denote characteristics in terms of registral direction and intervallic
difference. Figure 18.3 shows prototypical Narmour structures. A note in a melody
often belongs to more than one structure. Thus, a description of a melody as a se-
quence of Narmour structures consists of a list of overlapping structures. We parse
each melody in the training data to automatically generate an implication/realization
analysis of the pieces. Figure 18.4 shows the analysis for a melody fragment.

18.3.3 Data Mining Techniques

In order to induce predictive models for duration ratio, onset deviation, and energy
variation, we have applied two types of data mining techniques, namely numeri-
cal techniques and rule-based classification techniques. On one hand, numerical
methods induce expressive performance models capable of endowing a computer
generated music performance with the expressiveness that characterizes human gen-
erated music, i.e., transforming an inexpressive description of a musical piece into
an expressive performance of the piece. On the other hand, rule-based classifica-
tion methods are good at explaining the predictions they provide but are restricted
to a set of discrete classes as prediction space. Our problem at hand is one that
requires the prediction precision of numerical methods for generating accurate so-
lutions (i.e., expressive performances) but at the same time it is highly desirable to
be able to explain the system predictions. Having this in mind, we have explored
both approaches applying a sample of both numerical and rule-based classification
methods (we have also applied non–rule-based classification methods for comparison
purposes).

18.3.3.1 Numerical Methods

We have explored different numerical methods to induce predictive models for du-
ration ratio, onset deviation, and energy variation. The methods we have included in
our research are as follows:

Fig. 18.4. Narmour analysis of All of Me (from [8]).
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� Linear regression is the simplest scheme for numeric prediction that has been
widely used in statistical applications. The idea is to express the predicted value as
a linear combination of the attributes, with predetermined weights that are calcu-
lated from the training data, in order to minimize the overall deviation between the
training values and the model. Linear regression is not the best choice to approx-
imate nonlinear functions. As confirmed by the results (Section 18.4), expressive
performance does not seem to be a linear function on the attributes. However, we
have decided to include linear regression in our experiments as a baseline reference
for the other methods.

� Model trees build an induction tree which has a different linear model on each leaf.
Model trees behave well as each of the leaves’ linear models approximates a set of
more specific cases than with a global linear model; that is, model trees approximate
continuous functions by linear “patches,” a more sophisticated representation than
simple linear regression.

� Support Vector Machines take great advantage of using a nonlinear attribute map-
ping that leads them to be able to predict nonlinear models (though they remain
linear in a higher dimensional space). Thus, they provide a more flexible prediction,
but with a higher computational cost necessary to perform all the computations in
the higher dimensional space. Training a Support Vector Machine requires the so-
lution of a very large quadratic programming optimization problem. The quadratic
programming resolution has been optimized in terms of speed and memory usage
with the sequential minimal optimization algorithm [31]. They have been applied to
numerical prediction [32] and the results largely depend on the tuning of the algo-
rithm, for example, the choice of the kernel evaluation function and the parameters
that control the amount up to which deviations are tolerated (denoted by epsilon).
The kernel function defines implicitly the higher dimensional mapping applied to
the training vector. With an appropriate tuning, it is possible to control the number
of support vectors that define a boundary between two classes. We were interested
in obtaining a model with a relatively reduced number of support vectors (i.e., less
than a third of the training instances) in order to avoid overfitting and thus have
tuned empirically four support vector machines with the following parameters: (1)
Linear kernel, C = 1, epsilon = 0.05; (2) 2nd order polynomial kernel, C = 1,
epsilon = 0.05; (3) 3rd order polynomial kernel, C = 1, epsilon = 0.05; and (4)
Radial Basis Function kernel, gamma exponent = 0.95, C = 10, epsilon = 0.05.

18.3.3.2 Classification Methods

We have also explored different classification methods. We discretized the input val-
ues into classes, and used classification techniques to induce predictive models for
duration ratio, onset deviation, and energy variation. The number of classes was deter-
mined by the distribution of the input values. We applied a fix-width discretization for
duration ratio and onset deviation with nine and seven classes, respectively. The case
of energy variation is quite different as there is no information about note energy in
the score and we have to characterize each note energy in relation to the note average
energy in the recordings. Thus we performed a frequency discretization; that is, each
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target class contains the same number of cases, and characterize soft, normal, and
loud notes. Consequently, the classification results presented in Section 18.3.4 are to
be compared with the accuracy of a random classification, i.e., 11.11% for duration
ratio, 14.28% for onset deviation, and 33.33% for energy variation. The methods we
have included in our research are:

� The naive Bayes classifier is based on Bayes rule on conditional probability propa-
gation. It is called “naive” because this rule assumes that the attributes of an instance
are independent from each other. This can lead to weak results when attributes have
a strong correlation. The algorithm implements redundant attributes filtering as
preprocess [30]. Despite being one of the simplest algorithms, it has outperformed
more complex techniques in a significant number of cases.

� Lazy Methods are based on the notion of lazy learning that subsumes a family of
algorithms that store the complete set of given (classified) examples of an underlying
example language and delay all further calculations until requests for classifying
yet unseen instances are received. The K-Nearest Neighbor algorithm is one of
the most popular instanced-based algorithm, which handles well noisy data if the
training set has an acceptable size. The main idea of this algorithm is to compare
a test set with its nearest neighbors (the number is determined by the user and the
computational cost largely depends on it). A major problem of the simple approach
of K-Nearest Neighbor is that the vector distance will not necessarily be suited for
finding intuitively similar examples, especially if irrelevant attributes are present.
We empirically found the best number of neighbors: 5 for the duration ratio model,
11 for the onset deviation model, and 1 for the energy variation model. KStar
algorithms proceed in an similar fashion as K-NN, but use an entropy similarity
measure distance to find the neighbors of a test vector.

� Tree induction algorithms build a tree model by selecting at each node the most
relevant attribute. We compare the results of C4.5 [18, 20], C4.5 with boosting,
and the random forest algorithm. Boosting refers to a meta-algorithm that may
improve the results of any classification algorithm by giving to each instance of
the training set a particular weight proportional with the difficulty to classify such
instance. That is, a first classification model is proposed giving the same weight to
all the training instances. Misclassified instances with the model are then given a
greater weight, and so on. After a user defined number of iterations (in our case 10
iterations) the resulting model is able to deal with “difficult” training instances. This
boosting method can drastically improve the results of an inaccurate model, thought
overfitting can occur. The random forest algorithm uses a bagging technique: it
combines the decision of different models amalgamating the various outputs in a
single prediction. The decision can be seen as a vote between the models. Each tree
is built using random features selection. We used 20 random trees in our test with
the random forest algorithm.

� Inductive logic programming. Conditions in rules obtained by the C4.5 algorithm
(and by most of the rule learning algorithms) involve testing an attribute value
against a constant. Such rules are called propositional because they have the same
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expressive power as propositional logic. In many cases, propositional rules are
sufficiently expressive to describe a concept accurately. However, there are cases
where more expressive rules; for example, first-order logic rules would provide
a more intuitive concept description. These are cases where the knowledge to be
learned is best expressed by allowing variables in attributes. One important special
case involving learning sets of rules containing variables is called inductive logic
programming [19,25]. Inductive logic programming has proved to be an extremely
well-suited technique for learning expressive performance rules. This is mainly due
to (1) the possibility of considering an arbitrary-size note context (not necessarily
the context given by the previous and following note) without explicitly defining
extra attributes and (2) the possibility of introducing background knowledge (i.e.,
music theory knowledge) directly into the learning task. The background knowl-
edge is useful to guide the rule construction or to simply make rules more readable.
Using the training data, we applied a standard inductive logic programming sequen-
tial covering algorithm that incrementally constructs a theory as a set of first-order
rules (Horn clauses) by learning new rules one at a time, removing the positive
examples covered by the latest rule before attempting to learn the next rule. Note
that the algorithm considers two-class classification problems whereas our classi-
fication task involves three classes, for example, in the case of duration the classes
are shorten, lengthen, and same. We have reduced our problem to a two-class clas-
sification problem by taking the examples of one class as positive examples and the
examples of the other two classes as negative examples. We applied the learning
algorithm with the following target predicates: duration/2, onset/2, and en-

ergy/2. (where /n at the end of the predicate name refers to the predicate arity, i.e.,
the number of arguments the predicate takes). Each target predicate corresponds to
a particular type of transformation: duration/2 refers to duration transformation,
onset/2 to onset deviation, and energy/2 to energy transformation. For each
target predicate we use as example set the complete training data specialized for
the particular type of transformation; for example, for duration/2 we used the
complete data set information on duration transformation (i.e., the performed du-
ration transformation for each note in the data set). The arguments are the note in
the piece and performed transformation. We use (background) predicates to specify
both note musical context and background information. The predicates we consider
include context/6, narmour/2, succ/2, and member/3. Predicate context/8
specifies the local context of a note. We used the Aleph inductive logic programming
system [27].
The induced rules are of different types. Some focus on features of the note itself
and depend on the performance tempo while others focus on the Narmour analysis
and are independent of the performance tempo. Rules referring to the local context
of a note, i.e., rules classifying a note solely in terms of the timing, pitch and
metrical strength of the note and its neighbors, as well as compound rules that refer
to both the local context and the Narmour structure were discovered. To exemplify
the discovered rules, we present some of them below (':-' is read 'if', i.e.,

':-' represents the logical implication connective ←).
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D-1: [Pos cover = 21 Neg cover = 1]
duration(C, shorten) :-
succ(C, D), succ(D, E),
context(E, [nargroup(p, 1)|F]),
context(C, [nargroup(p, 2)|F]).

“Shorten a note n if it belongs to a P Narmour group in second position and if note
n + 2 belongs to a P Narmour group in first position”

D-2: [Pos cover = 41 Neg cover = 1]
duration(C, same) :-
succ(C, D), succ(D, E),
context(E, [nargroup(vr, 3)|F]),
member(nargroup(p, 1), F).

“Do not stretch a note n if note n + 2 belongs to both VR Narmour group in third
position and P Narmour group in first position”

O-1: [Pos cover = 41 Neg cover = 2]
onset(C, same) :-
succ(C, D),
context(D, [nargroup(vr, 3)|E]),
member(nargroup(d, 1), E).

“Play a note at the right time if its successor belongs to a VR Narmour group in
third position and to a D Narmour group in first position”

O-2: [Pos cover = 17 Neg cover = 1]
onset(C, advance) :-
succ(C,D), succ(D,E),
context(E,[nargroup(ip,1)|F]),
context(D,[nargroup(p,3)|F]).

“Play a note n in advance if n+1 belongs to a P Narmour group in third position
and if n+2 belongs to an IP Narmour group in first position”

E-1: [Pos cover = 26 Neg cover = 0]
energy(C, loud) :-
succ(D, C),
context(D, [nargroup(d, 2)|E]),
context(C, [nargroup(id, 1)|E]).

“Play loudly a note if it belongs to an ID Narmour group in first position and if its
predecessor belongs to a D Narmour group in second position”

E-2: [Pos cover = 34 Neg cover = 1]
energy(C, soft) :-
succ(C, D),
context(D, [nargroup(p, 4)|E]),
context(C, [nargroup(p, 3)|E]).
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Table 18.1. Cross-validation results for duration ratio.

Algorithm C.C.I (%) C.C R.A.E (%) R.R.S.E (%)
C4.5 74.59 — 68.07 86.84

C4.5 with boosting 72.99 — 72.87 87.35
Random forest 70.51 — 62.74 89.85

KStar 73.71 — 63.04 86.65
KNN 67.15 — 72.77 95.57

Naive bayes 59.97 — 98.18 103.07
ILP 80.37 — 45.25 76.96

Linear regression — 0.33 98.69 94.39
Least med square regression — 0.29 95.22 96.60

Model tree regression — 0.72 74.89 69.14
SVM regression (1) — 0.29 95.30 96.15
SVM regression (2) — 0.48 89.01 88.24
SVM regression (3) — 0.66 76.65 75.47
SVM regression (4) — 0.70 81.11 71.23

“Play soft two successive notes if they belong to a P Narmour group respectively
in third and forth position”

18.3.4 Results

We present a comparative table for each of the expressive transformation aspects we
are dealing with, namely note duration (Table 18.1), onset (Table 18.2), and energy
(Table 18.3). We performed a 10-fold cross validation for all the algorithms. In Tables
18.1, 18.2, and 18.3, C.C.I refers to the correctly classified instances rate, C.C to the
correlation coefficient, and R.A.E to the relative absolute error and R.R.S.E the root
relative squared error which are calculated as follows. Note that the formulas we
present are used to compute statistics for each cross-validation run. Consequently
the values presented in Tables 18.1, 18.2, and 18.3 are averaged over the 10 cross-
validation runs.

C.C.I = NC.C

NC.C + NI.C
(18.2)

where NC.C (respectively NI.C ) stands for the total number of correctly (respectively
incorrectly) classified instances.

C.C =
∑N

i=1(Oi − Ō)(Ti − T̄ )√∑N
i=1(Oi − Ō)2

∑N
i=1(Ti − T̄ )2

(18.3)

R.A.E =
∑N

i=1 | Oi − Ti |∑N
i=1 | Ti − T̄ | (18.4)

R.R.S.E =
√√√√∑N

i=1(Oi − Ti )2∑N
i=1(Ti − T̄ )2

(18.5)
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Table 18.2. Cross-validation results for onset deviation.

Algorithm C.C.I (%) C.C R.A.E (%) R.R.S.E (%)
C4.5 78.61 — 68.47 88.12

C4.5 with boosting 78.56 — 57.72 87.72
Random forest 78.09 — 59.22 85.73

KStar 76.49 — 66.34 88.63
KNN 74.27 — 82.46 94.87

Naive bayes 68.85 — 104.87 104.03
ILP 90.02 — 70.12 87.45

Linear regression — 0.17 101.12 98.41
Least med square regression — 0.01 92.50 101.32

Model tree regression — 0.43 91.51 90.16
SVM regression (1) — 0.14 99.92 98.88
SVM regression (2) — 0.24 89.34 98.18
SVM regression (3) — 0.38 95.41 92.50
SVM regression (4) — 0.44 94.56 90.34

Table 18.3. Cross-validation results for energy variation.

Algorithm C.C.I (%) C.C R.A.E (%) R.R.S.E (%)
C4.5 72.83 — 55.38 76.25

C4.5 with boosting 73.3 — 44.56 74.1
Random forest 70.3 — 51.7 78.04

KStar 70.92 — 52.42 75.5
KNN 58.01 — 61.91 102.67

Naive bayes 54.8 — 80.17 91.16
ILP 79.8 — 36.61 71.52

Linear regression — 0.27 95.69 96.13
Least med square regression — 0.22 87.92 108.01

Model tree regression — 0.67 66.31 74.31
SVM regression (1) — 0.25 89.28 98.57
SVM regression (2) — 0.47 82.53 89.4
SVM regression (3) — 0.56 75.47 82.95
SVM regression (4) — 0.64 69.28 77.23

In Equations 18.3, 18.4, and 18.5, N is number of instances considered in a given
cross-validation run, Oi is the output value of the model for the example indexed by
i , Ti is the target value for the example indexed by i , Ō (respectively T̄ ) is the mean
of the output (respectively target) for all the instances considered in the run.

The main indicators for the numerical algorithms and classification algorithms
are the correlation coefficient and the correctly classified instances, respectively. The
correlation coefficient measures the statistical correlation between the predicted and
actual values. Note that here a higher number means a better model, with a 1 meaning
perfect statical correlation and a 0 meaning there is no correlation at all. This perfor-
mance measure is used only for numerical input and output. The correctly classified
instances rate is self-explanatory. Relative absolute error is the total absolute error
made relative to what the error would have been if the prediction simply had been
the average of the actual values. Root relative squared error is the total squared error
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made relative to what the error would have been if the prediction had been the average
of the absolute value. This error exaggerates the cases in which the prediction error
was significantly greater than the mean error.

Among the regression methods we explored, model tree regression is consistently
the most accurate method, and thus, it is the model it produces the one we have im-
plemented in our expressive performance system. Among the classification methods
we explored, inductive logic programming is the most accurate classification method.
This can be explained by the fact that inductive logic programming uses background
knowledge for inducing the model. Thus, the algorithm allows to consider wider
temporal windows (via the succ predicate), as opposed to the fixed width window
containing only a note and its immediate neighbors. A positive result is that the re-
quirement of inducing an understandable model does not involve any penalty in terms
of accuracy (compared to the other classification methods).

Most of the misclassified instances by inductive logic programming are classi-
fied into neighbor classes to the correct class. As mentioned before, linear regression
performs poorly since, as expected, expressive performance is a complex and mul-
tilevel phenomenon which cannot be handled accurately by a linear model. Also as
expected, support vector machines perform well only with a radial function kernel,
or a 3rd-order polynomial kernel or higher.

18.4 Expressive Melody Generation

On the basis of the expressive music performance model induced by model tree regres-
sion (Section 18.3), we have implemented an expressive performance system capable
of generating expressive performances of melodies. The system is able to generate
either an expressive MIDI performance from an inexpressive MIDI description of a
melody or an expressive audio file from an inexpressive audio file. Recently, and more
interestingly from the music synthesis point of view, we have extended the system
so it is capable of generating an expressive audio file from an inexpressive MIDI
description of a melody [21,22]. Figures 18.5 and 18.6 show snapshots of the system
generating a MIDI expressive performance (from a MIDI inexpressive description)
and the system generating an audio file (from an inexpressive audio), respectively.

In the case of the generation of an expressive MIDI performance from an inexpres-
sive description of the melody (i.e., the score description), we compute the expressive
duration of a note by multiplying the predicted duration ratio and the inexpressive
note duration. The expressive note onset is obtained adding the predicted onset de-
viation and the inexpressive onset value. The case of the energy is different as the
relation between note energy and corresponding MIDI velocity (an integer between
0 and 127) is quite arbitrary. We defined the audio energy to MIDI velocity map-
ping as veloci ty = 63 ∗ log10(energy) + 64 where the audio energy is normalized
to 1 ≤ energy ≤ 10.

In the case of expressive audio generation from an inexpressive audio source, the
input is an audio file (which can either be generated by a synthesizer or be given as an
audio recording). The system transforms the input audio file according to the induced
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Fig. 18.5. Expressive performance generator showing the inexpressive MIDI description of
Like Someone in Love (top) and the transformed expressive MIDI description (bottom).

model using SMSTools [26] into an expressive audio file without affecting any other
perceptual feature, such as pitch or spectral shape.

18.5 Related Work

Previous research addressing expressive music performance using data mining tech-
niques has included a broad spectrum of music domains. The most related work to

Fig. 18.6. Expressive performance generator tool showing the inexpressive audio file of Body
and Soul and the transformed expressive audio file.



P1: OTE/SPH P2: OTE
SVNY295-Petrushin August 16, 2006 19:41

18. A Data Mining Approach to Expressive Music Performance Modeling 377

the research presented here is the work by Lopez de Mantaras et al. [12]. Lopez de
Mantaras et al. report on SaxEx, a performance system capable of generating ex-
pressive solo performances in jazz. Their system is based on case-based reasoning, a
type of analogical reasoning where problems are solved by reusing the solutions of
similar, previously solved problems. To generate expressive solo performances, the
case-based reasoning system retrieve, from a memory containing expressive interpre-
tations, those notes that are similar to the input inexpressive notes. The case memory
contains information about metrical strength, note duration, and so on, and uses this
information to retrieve the appropriate notes. However, their system is incapable of
explaining the predictions it makes.

With the exception of the work by Lopez de Mantaras et al., most of the research
in expressive performance using data mining techniques has focused on classical
piano music where the tempo of the performed pieces is not constant. Thus, these
works focus on global tempo and energy transformations while we are interested in
note-level tempo and energy transformations (i.e., note onset and duration).

Widmer [33] reported on the task of discovering general rules of expressive clas-
sical piano performance from real performance data via inductive machine learning.
The performance data used for the study are MIDI recordings of 13 piano sonatas
by W.A. Mozart performed by a skilled pianist. In addition to these data, the music
score was also coded. The resulting substantial data consist of information about the
nominal note onsets, duration, metrical information, and annotations. When trained
on the data, an inductive rule learning algorithm discovered a small set of quite simple
classification rules [33] that predict a large number of the note-level choices of the
pianist.

Tobudic et al. [28] describe a relational instance-based approach to the problem
of learning to apply expressive tempo and dynamics variations to a piece of classical
music, at different levels of the phrase hierarchy. The different phrases of a piece and
the relations among them are represented in first-order logic. The description of the
musical scores through predicates (e.g., contains(ph1,ph2)) provides the background
knowledge. The training examples are encoded by another predicate whose arguments
encode information about the way the phrase was played by the musician. Their
learning algorithm recognizes similar phrases from the training set and applies their
expressive patterns to a new piece.

Other inductive approaches to rule learning in music and musical analysis include
[1,4,9,15]. In [4], Dovey analyzes piano performances of Rachmaniloff pieces using
inductive logic programming and extracts rules underlying them. In [1], Van Baelen
extended Dovey’s work and attempted to discover regularities that could be used to
generate MIDI information derived from the musical analysis of the piece. In [15],
Morales reports research on learning counterpoint rules. The goal of the reported
system is to obtain standard counterpoint rules from examples of counterpoint music
pieces and basic musical knowledge from traditional music. In [9], Igarashi et al.
describe the analysis of respiration during musical performance by inductive logic
programming. Using a respiration sensor, respiration during cello performances was
measured and rules were extracted from the data together with musical/performance
knowledge such as harmonic progression and bowing direction.
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There are a number of approaches that address expressive performance without
using data mining techniques. One of the first attempts to provide a computer system
with musical expressiveness is that of Johnson [10]. Johnson developed a rule-based
expert system to determine expressive tempo and articulation for Bach’s fugues from
the well-tempered clavier. The rules were obtained from two expert performers.

A long-term effort in expressive performance modeling is the work of the KTH
group [2, 5, 6]. Their Director Musices system incorporates rules for tempo, dynam-
ics, and articulation transformations. The rules are obtained from both theoretical
musical knowledge, and experimentally from training using an analysis-by-synthesis
approach. The rules are divided into differentiation rules that enhance the differences
between scale tones, grouping rules which specify what tones belong together, and
ensemble rules which synchronize the voices in an ensemble.

Canazza et al. [3] developed a system to analyze the relationship between the
musician’s expressive intentions and her performance. The analysis reveals two ex-
pressive dimensions, one related to energy (dynamics) and another one related to
kinetics (rubato).

18.6 Conclusion

We have described an approach to perform expressive transformation in monophonic
Jazz melodies (the deviations and changes we consider are on note duration, note
onset, and note energy). Our approach consists of (1) a melodic transcription compo-
nent that extracts a set of acoustic features from monophonic audio recordings, (2) a
data mining component that induces expressive transformation models from the set of
extracted acoustic features, and (3) a melody synthesis component that generates ex-
pressive monophonic phrases from inexpressive phrases using the induced expressive
transformation model. For the data mining component, we explored and compared
both classification and numerical data mining techniques. Of particular interest are
the models obtained using inductive logic programming and model trees that proved
to be the most accurate techniques. As future work, we plan to increase the amount
of training data, the amount of descriptors to be extracted from it (e.g. vibrato), and
combine this two with global structure-level information. This will certainly gen-
erate a more complete model of expressive performance. We are also working on
an expressive model for the transitions among notes in a melody. With this aim we
have developed a model that characterizes the different note transitions, for example,
sttacato, legato. We are planning to apply the methodology presented in this chapter
to other wind instruments.
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19. Supporting Virtual Workspace Design
Through Media Mining and Reverse
Engineering

Simeon J. Simoff and Robert P. Biuk-Aghai

Summary. Supporting virtual collaboration can be a complex and time-consuming exercise.

One of the key components in setting up virtual collaboration is the design of the virtual

workspace as a coherent medium to support the activities involved in collaborative project

development. The availability of information about virtual collaboration in virtual workspaces,

in the form of action patterns, offers the opportunity for utilization of such information and

its future reuse. This chapter presents a new approach for supporting design and redesign

of virtual workspaces, based on combining integrated data mining techniques for refining

the lower level models with a reverse engineering cycle to create upper level models. The

methodology is based on the combination of a new model of vertical information integration

related to virtual collaboration (the Information Pyramid of Virtual Collaboration), which

encompasses information about objects and actions that make up action patterns at different

levels of granularity. The approach allows comparison at all levels of the initial model of a

process built based on the top-down requirements engineering approach with the model built

from the actual workspaces by the proposed reverse engineering cycle.

19.1 Introduction

Virtual collaboration, understood to mean the collaboration of teams across bound-
aries of space and time and aided by information and communication technology,
has become increasingly common in recent years [1]. The environment that supports
virtual collaboration is referred to as a virtual workspace (VW). Many organizations
are relying on the ability to bring together people for joint work in a virtual space,
without having to bring the people involved together in a traditional face-to-face set-
ting. There are several motivations for doing so, the most obvious being budgetary
(saving travel and lodging expenses), and safety-related (avoiding the risks inherent
in air travel).

Supporting virtual collaboration can be a complex and time-consuming exer-
cise. One of the key components in setting up virtual collaboration is the design
of the virtual workspace as a coherent medium to support the activities involved in
collaborative project development. In the early days, to develop such collaborative
environments, the developer had to be proficient in conceptual modelling, network

383



P1: OTE/SPH P2: OTE

SVNY295-Petrushin November 1, 2006 11:41

384 Simeon J. Simoff and Robert P. Biuk-Aghai

programming, object management, graphics programming, device handling, and user
interface design. During the recent years, an alternative approach has been to design
VWs, using and integrating existing underlying workflow and groupware technolo-
gies [2]. The design of virtual workplaces is focused on the “arrangement” of the
workplace in a way that will support virtual collaboration between geographically
dispersed participants. The goal of the design of a VW is to meet some needs, or
requirements, of the collaborators, whether this be an educational, research, or busi-
ness collaboration. Such requirements are usually expressed in terms of activities (see
[3, 4] for examples of how the notion of activities is used in design, and how a design
ontology can be refined, respectively) and their attributes (e.g., people who are execut-
ing those activities, objects (artefacts) involved in the activities, etc.). Thus, the design
of a VW can be viewed as an arrangement, or ordering, of the VW in such a way that
it supports the collaborative processes that constitute the virtual collaboration.

Virtual architecture [5] (the “spatial view”) and requirements engineering (the
“process view”) are the two most common approaches to systematic design of virtual
workspaces. Relevant to our work is the “process view” approach, which assumes
that sufficient a priori knowledge about the virtual collaboration process is available
to make it possible to model it. Processes can be classified as either deterministic
or nondeterministic. In deterministic processes, the steps within the process are well
defined; thus, the process can be modelled with the workflow methodologies, and
is referred to as a workflow process. In nondeterministic processes, not all steps
can be planned ahead. While workflow processes have received much attention in
the literature [2], and are supported by a number of modelling methods, few tech-
niques exist for modelling partially planned or emergent collaboration processes.
Such processes are common in knowledge-intensive activities such as product inno-
vation or collaborative design, and usually follow only general process structures,
with details of the process emerging during execution. Processes of this type are
not well supported by workflow technology, which requires entire processes to be
defined in advance, and then enacted according to this definition. Instead, such col-
laboration processes need a greater degree of flexibility. Environments that are based
on the notion of collaboration spaces (a set of virtual workspaces), incorporating
features of document management, interpersonal and group communication, noti-
fication, and a configurable governance structure provide a more adequate form of
support [6].

Another aspect of VW design is the human factor. One approach is to base the
modelling in this case on the soft systems methodology [7]. An instance of such a
modelling methodology that addresses the requirements of collaboration processes,
and that is tailored to the use of collaboration spaces, has been proposed in [8]. The
methodology consists of four consecutive modelling steps (see Figure 19.1):

1. System analysis: develop an understanding of the current system, which is docu-
mented in an analysis model using a modified form of rich pictures, accompanied
by so-called transition diagrams.

2. Requirements analysis: develop a requirements model, which describes required
changes to the existing system.



P1: OTE/SPH P2: OTE

SVNY295-Petrushin November 1, 2006 11:41

19. Virtual Workspace Design Through Media Mining and Reverse Engineering 385

design

Detailed Specification
model

design

Broad Design
model

analysis
Requirements

model

analysis

System Analysis
model

Requirements

Fig. 19.1. Requirements engineering approach.

3. Broad design: prepare a design model, which describes the modified collaboration
process, incorporating the requirements identified in the previous step, and which
is again represented by a modified rich picture notation and transition diagrams.

4. Detailed design: produce a specification model that shows the detailed setup of
collaboration spaces needed to support the new design, using a notation called
MOO diagrams.

As an overall approach of conceptual modelling, this is an activity-centred ap-
proach. We illustrate the main modelling steps and notations by applying them to the
formalization of a manuscript preparation process. Figure 19.2 shows a rich picture
that conveys high-level properties of the process. The figure reveals the main activities
(shown as clouds), the roles, or main actors (shown as stick figures) that are engaged
in these activities, and the main artefacts (shown as boxes) that are used and produced
by these activities. This amounts to the main features that may be known in advance
about a partially planned process.

The transition diagram in Figure 19.3 shows the sequence in which the activities
of this process are carried out. It can be seen that two of the activities, “Chapter
acquisition” and “Reviewing,” may be performed iteratively.

For each activity in the rich picture, a separate MOO diagram shows details
of required support from a collaboration space. This is illustrated in Figure 19.4,
the MOO diagram for the Reviewing activity. It shows which roles (ovals) have
which kind of access (directionality of arrows) to which artefacts (boxes with rounded
corners), and which discussion forums (hexagons) they are assigned to. The example
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Fig. 19.2. Rich picture of a manuscript preparation process.
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Fig. 19.3. Transition diagram of a manuscript preparation process.
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Fig. 19.4. MOO diagram of the reviewing activity.
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Fig. 19.5. The VW at the end of the top-down requirements engineering cycle.

illustrates the double-blind review process where communications between authors
and reviewers are mediated through a separate entity.

As a result of the design of the VW, a workspace with the corresponding features
is created for each MOO diagram. This is where the requirements engineering top-
down approach ends. The example in Figure 19.5 illustrates this idea—the formalized
process is the actual design. This initial configuration is built on the premise that pro-
cesses in virtual collaboration will be organized and conducted in a way similar to the
conventional (face-to-face) collaboration. However, during the collaborative process,
the initial configuration evolves according to the emerging needs of the particular pro-
cess and its branching. Hence the design of the VW will gain significantly if we are
able to know what is, and has been, “going on” during the virtual collaboration, relate
that to the changes in the VW and restore a more accurate high-level picture of the
process.

The example in Figure 19.6 shows the result of the evolution of the original
design of the VW as a result of emergent processes during the project’s execution—it
contains more workspaces than were initially identified and created.

Can we predict some elements of the evolution of a new collaborative process, on
the basis of similarities and analogies with processes formalized and supported before?
Can we capture and utilize in the virtual workspace design process the evolutionary
component so that we can provide better support to the developers of collaborative
workspaces?

This chapter addresses these questions. The rest of the chapter presents a new
approach for supporting design and redesign of virtual workspaces, based on com-
bining integrated data mining techniques for refining the lower level models with a
reverse engineering cycle to create upper level models. The approach allows com-
parison at all levels of the initial model of a process built based on the top-down
requirements engineering approach with the model built from the actual workspaces
by the proposed reverse engineering approach. The approach proposed in this chapter
is applied to data collected in virtual workspaces in an educational setting. The un-
derlying philosophy of this approach differs from the approach taken by the Process
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Fig. 19.6. The VW as a result of the evolution of the process.

Mining Research Group at the Technical University of Eindhoven in their work on
workflow/process mining [9, 10], who based their process modelling technique on
Petri nets.

19.2 Principles of the Approach Toward Reverse Engineering
of Processes Using Data Mining

The approach presented in this chapter is based on the following principles:

� The information pyramid of virtual collaboration (referred to hereafter as the in-
formation pyramid) is an information model capturing essential aspects of virtual
collaboration. This is a prerequisite for the development of effective reverse engi-
neering methods in VW.

� Integrated collaboration data, collected during the evolution of the virtual work-
place, is the source for the reverse engineering discoveries.

� Data mining methods applied to this integrated collaboration data need to take into
account the information pyramid.

The following section presents the information pyramid in detail, which is central
to this approach.

19.2.1 The Information Pyramid Formalism

Virtual collaboration is usually described in terms of the performance of actions
in virtual workspaces that involves manipulations of objects. To distinguish virtual
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workspaces from the actual underlying groupware technology, we refer to the latter as
collaboration systems. An example is posting a discussion statement to an electronic
discussion forum. The act of posting constitutes the action, whereas both the discus-
sion statement and the discussion forum constitute objects. An object is defined as a
static entity provided and maintained by a collaboration system. Examples of objects
include people, documents, and communication channels. An action is defined as
a function or operation that can be performed in a collaboration system. Examples
of actions include “creating a collaboration space,” “entering a collaboration space,”
“creating a document,” “reading a document,” and “sending a message to another
user.”

Actions as defined here are independent of objects. However, almost every action
involves objects. To fully describe an action therefore requires inclusion of context
information. Action context is the set of information identifying the subject, referent,
and location of an action. Here, subject refers to the action performer (a human user
of the collaboration system, or a computational entity); referent is that which is being
acted upon (such as a discussion forum); and location is the virtual place where
the action occurs. A given action may occur in many different action contexts. For
example, the action of posting a discussion statement to a bulletin board could be
performed by different subjects (users); have different referents (discussion forums);
and be performed in different locations (collaboration spaces). Collections of similar
actions can be generalized into action patterns, describing an action together with a
particular action context.

The information pyramid formalism consists of information about objects and
actions, and their combination into specific action patterns, related to virtual collab-
oration. It consists of six levels, as depicted in Figure 19.7.

At the bottom of the information pyramid is the most small scale, detailed in-
formation, whereas at the top is the most large-scale, abstract information. This is
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Fig. 19.7. The information pyramid formalism.
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expressed in the shape and level of shading in Figure 19.7. The shape of the figure
suggests that the amount of information at higher levels is smaller, as it constitutes
a higher level of abstraction. The different levels of shading suggest that informa-
tion at higher levels is denser than that at lower levels, in the sense that each unit
of higher level information corresponds to several units of lower level information.
From bottom up, the different levels contain the following information.

Infrastructure level: This is the level of the underlying software infrastructure
running “below” the collaboration system itself. In the case of a Web-based collab-
oration system, for instance, the underlying infrastructure is a Web server. At this
level, objects are recorded in the files under the control of the underlying system.
Actions are typically recorded as events occurring in the software infrastructure, such
as Web server access requests recorded in a Web server log. Records in the transaction
log maintained by a database management system, in the case where a collaboration
system operates on top of such a system, are another such example. Action patterns
at this level correspond to events in the software infrastructure.

System level: This is the level of the collaboration system itself, through which
collaboration is carried out. Records of objects at this level are contained in the
application data of the collaboration system, typically residing in files or database
tables. Actions are the commands issued to the collaboration system. Collaboration
systems are typically structured as client-server systems, where multiple clients are
served by one server. In this case, clients send service requests to a server, which then
performs the requested actions. Records of such service requests, such as in a server
log, constitute records of actions at this level. This information is of a larger scale
than the corresponding information on the infrastructure level, so a single object or
action on the system level usually corresponds to multiple objects or actions on the
infrastructure level. Action patterns at this level correspond to operations performed
by the collaboration system.

User level: This is the level on which individual users operate. These users per-
form actions on objects residing in collaboration spaces. Objects at this level are
the collaboration spaces and other objects contained in them, whereas actions at this
level are the operations performed by users, such as for instance opening a document
for reading. Objects at this level are often abstractions of corresponding objects at
the system level. Likewise, actions at this level often correspond to multiple actions
on the system level; that is, a single action performed by the user may require the
collaboration system to perform several system-level actions. Action patterns at this
level correspond to operations performed by a single user.

Collaboration level: At this level, multiple users work in collaboration with each
other. Objects at this level, as on the user level, are the collaboration spaces and other
objects contained in them, whereas actions at this level are the operations performed
by multiple users. Objects at this level mostly correspond closely to those at the user
level. However, actions at this level are abstractions of multiple user-level actions.
Action patterns at this level correspond to operations performed by groups of users.

Task level: At this level, larger-scale activity involving several lower level actions
takes place. Objects at this level are groupings of multiple lower level objects, whereas
actions at this level are the tasks performed by multiple users. These tasks consist of
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certain combinations of actions and objects from lower levels. Action patterns at this
level correspond to tasks performed by groups of users.

Process level: At this, the highest level of the Information Pyramid, collections
of tasks are performed by groups of users. These constitute work processes, that is,
collections of related tasks. Objects at this level are combinations of multiple lower-
level objects involved in the process. Actions at this level are collections of task-level
actions. Action patterns at this level correspond to processes performed by groups of
users.

A broad categorization of levels in the information pyramid formalism is shown by
the labels on the left hand side in Figure 19.7: micro level, meso level, and macro level.
This categorization is centred on the user level, for it is here that the actual actions
performed by users of the collaboration system take place. This level is designated as
the meso level in this categorization. At levels below the meso level, multiple smaller
scale operations corresponding to each user action occur, thus the designation micro
level. On the other hand, at levels above the meso level are aggregations of individual
user actions into multiuser actions, tasks, and processes, thus the designation macro
level.

19.2.2 Integrated Collaboration Data and Data Mining Framework

The information pyramid provides most of the semantic information needed for un-
derstanding and designing the data collection. A framework that embeds knowledge
discovery in the design and use of collaborative virtual environments, known as the
“Space-Data-Memory” framework, has been presented in detail in [11], and is shown
in Figure 19.8.
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Fig. 19.8. The integrated data mining framework used in the reverse-engineering approach

(adapted from [11]).
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This framework suggests (1) how to obtain process knowledge from VWs, and
(2) how to “recover” discovered process knowledge back into the design of the VWs.
The framework consists of four interwoven components: collaborative virtual en-
vironments (or virtual workspaces), collaboration data, knowledge discovery, and
organizational memory (equivalent in terms of computing to a case-based reasoning
system). Combined with the information pyramid formalism, this framework provides
the background for the reverse engineering approach described in this chapter.

Reverse engineering of processes from VW is possible through the analysis of
collaboration data. Generally, such data are of two kinds: structural and behavioral
data. Structural data capture static aspects of collaboration, such as the setup of a
collaboration space. For example, structural data can capture the variety of roles and
artefacts in each workspace, and the links between the workspaces. Behavioral data
captures dynamic aspects of collaboration, such as the actions performed by a virtual
team in a collaboration space, and the dynamics of discussion threads and discussion
content. The assumption is that such data reflects the types of activities supported
in the environment, the corresponding topology of the collaboration space, and the
corresponding underlying technological representation.

19.3 Method for Reverse Engineering of Processes

The reverse engineering method employs the “Space-Data-Memory” framework and
the information pyramid, aiming to recover, or discover, the design of a collaborative
process, and express it using the modelling notations introduced in the introduction,
that is, rich pictures, transition diagrams, and MOO diagrams. Rich pictures are used
for representing entire processes, transition diagrams for showing task sequences,
and MOO diagrams for showing individual task detail. The method proceeds in the
reverse order of the methodology presented in [8]: first individual task models are
obtained, then these are combined to a process model, and finally a model of task
sequences is obtained, as illustrated in Figure 19.9.

Task analysis: Individual collaboration spaces are seen as being equivalent to
individual tasks (or activities in the terminology adopted in [8]). Analyzing a task
aims to produce a task model, represented in the form of a MOO diagram. Depending
on the collaborative system in which the collaboration was carried out, this may
be a straightforward mapping through the information pyramid that can be fully
automated, or it may require a manual process of identifying and mapping modelling
elements. MOO diagrams contain mainly three modelling elements, namely roles,
artefacts, and discussion forums, which may be related through certain defined types
of relationships.

Process analysis: Once task models have been produced, relationships between
tasks need to be analyzed in order to discover which tasks belong to the same process.
A number of methods are available to aid in this analysis. One method is to analyze
shared task elements, such as artefacts, discussion forums, roles, users, etc. The
higher the proportion of shared elements between a pair of collaboration spaces, the
greater the likelihood that the tasks in the two spaces are related and are part of
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Fig. 19.9. Method for reverse engineering of processes.

the same process. Another method of analysis is to mine traversal patterns between
collaboration spaces. This can reveal a network of spaces among which their users
traverse back and forth. Such networks are a good indication of related tasks that are
part of the same process. A further method is to look for so-called “handover points,”
where objects are passed from one collaboration space to another. Such handovers
occur when an object, such as an artefact, is produced by one task as its output, and is
received by another task as its input. A handover point usually is a good indicator that
two tasks are part of the same process. To produce the final set of tasks belonging to
the same process, each of the above methods is applied to every pair of collaboration
spaces, producing an individual process predictor value. Next, all of these values are
summed together, to yield the total process predictor value. The tasks are considered
to belong to the same process if their total process predictor value exceeds a given
threshold, which is empirically defined. Pairs of tasks are linked together into a task
network in such a way that each pair of connected nodes in the network is represented
in the set of pairs of tasks remaining from the previous elimination step. The final
output of this step is a process model, expressed as a rich picture.

Temporal analysis: Once a process model has been obtained, further analysis can
be performed to derive a task sequence model. This analysis takes the temporal rela-
tionship of actions in different collaboration spaces into account. Actions that occur
in different spaces can be related to each other in time in different ways. Looking at
all the actions occurring in a collaboration space in their entirety, fundamentally there
are only two temporal relationship types: either actions in one space precede actions
in another space, or actions in two spaces occur in parallel. Usually a combination
of these relationship types exists in a given pair of collaboration spaces, for example,
partially overlapping actions, interleaved actions, etc. To determine task sequences,
an analysis of temporal action relationships is performed on a pair of tasks taken from
the process model. This analysis is based on action levels, which refers to the tempo-
ral clustering of actions in a given task, that is, task intensity. For each collaboration
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space, action levels over the entire recorded history of the space are obtained, broken
down per unit of time (e.g., day, week). Next, based on the observed distribution
of action levels, a threshold is established above which activity in the collaboration
space is considered to represent task activity. Using this threshold, a temporal se-
quencing of actions in collaboration spaces, and thus of corresponding tasks, is now
possible. It also makes it possible to identify parallel or interleaved tasks, where after
the handover from one task to another, the previous task resumes activity. When this
is followed by a switch back to the successor task, an iteration, or loop, is identified.
Once all task sequences have been identified, a task sequence model can be produced,
represented in the form of a transition diagram.

The information pyramid assists with the above-described analyses by providing
specifications of transformations of information to higher levels. Information on the
levels above the base level of the information pyramid can be derived from those at
lower levels through transformations such as aggregations. This is achieved through
initial specification of a model of each level of the information pyramid, in terms of
its constituent information items (objects, actions, action patterns), in the form of an
ontology of the given collaboration system. This is followed by the specification of the
transformations that produce an information item from one or more information items
on the level below it. All these specifications become part of an ontology that covers
all levels of the information pyramid from the base level up, and the transformations
between them. This is shown in Figure 19.10, which also depicts the information
flows from one level’s model through a set of transformations to the next-higher
level’s model.

These transformations link consistently the action patterns between levels, as
action patterns on a given level (with the exception of the lowest level) are aggregations
of action patterns on the level below, as illustrated in the example in Figure 19.11.
Thus an instance of a higher-level action pattern corresponds to multiple instances of
lower-level action patterns. In this way there is a chain of correspondences of action
patterns from the lowest level to the highest level of the information pyramid.

At the end of the reverse engineering cycle, a set of models is available which
reflect certain essential process features, expressed in terms of the information pyra-
mid of the virtual workspace from which they were obtained. These can be deposited
in an organizational memory as expressions of how collaboration has occurred, that
is, as procedural memory, complementing other information on the outcomes of the
collaboration. Such process models thus become available for future retrieval and
reuse, supporting the design of new virtual workspaces.

19.4 Example of Reverse Engineering of Knowledge-Intensive
Processes from Integrated Virtual Workspace Data

In this section we present an example of the application of our methodology for reverse
engineering of processes from integrated data, collected from virtual workspaces.
The presented reverse engineering method for process extraction was applied to data
collected from a set of virtual workspaces implemented in the LiveNet collaboration
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Fig. 19.10. Ontology specification of models and transformations of the information pyramid.
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Fig. 19.11. Chain of correspondences of action patterns provided by the information pyramid

to the reverse engineering method.

system. LiveNet is a collaboration system developed at the University of Technology,
Sydney [12]. It supports mainly asynchronous collaboration of distributed groups
of people, that is, different-time, different-place interactions, which influences the
patterns that can be discovered. A central server is accessed across the network through
one of several client interfaces, most commonly through a Web interface (an example
of which is shown in Figure 19.12).

Fig. 19.12. A view of LiveNet user interface (Web version).
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The data originated from 513 student and staff users at the University of Technol-
ogy, Sydney, who used LiveNet for a number of purposes. The collaboration data span
a 3-month period, during which time a total of 721 workspaces were created. Reverse
engineering focused on a set of workspaces that were set up by students learning to
use collaboration technology, in this case to support a construction management task.

19.4.1 Task Analysis

Initially, visual data exploration aided the identification of potential candidates for
reverse engineering. A specialized tool, the workspace visualiser, developed by us for
the visualization of instances of workspaces, was used for this purpose. An example
of a so-called inter-workspace map, displaying relationships between workspaces, is
shown in Figure 19.13.

This map reveals a number of clusters of workspaces that appear to be closely
related and could be part of the same work process. Later, process analysis will show
whether this assumption can be supported. First, task analysis is performed for all
workspaces. To illustrate this, Figure 19.14 shows an intra-workspace map (also
produced by our visualization tool), displaying the relationships among the elements
internal to a workspace, such as roles, documents, and discussion forums. Figure
19.15 shows the MOO diagram that has been derived from this intra-workspace map.

Both figures show that almost all assignments of documents and discussion
forums to roles in the workspace are identical. The only differences exist in the

Fig. 19.13. Inter-workspace map displaying relationships between workspaces.
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Fig. 19.14. Intra-workspace map of the “Propose Change” workspace.

creation/modification of the Problem and Proposed Change documents (arrow point-
ing from the role to the document), which may be performed only by the Client and
Coordinator roles, respectively. Coupled with the presence of the discussion forums
for commenting on the design and discussing changes, this indicates a participatory
work process: all roles may read all documents and join in the discussions, while
changes to documents are coordinated by having only one role in charge of making
such changes.

Given an ontology of the collaboration system and a set of rules, the task analysis
and derivation of a MOO diagram can be performed automatically. The task analysis
is performed for all workspaces under consideration. In the example of the inter-
workspace map shown in Figure 19.13, this is done for 65 workspaces (out of the
total of 721).

19.4.2 Process Analysis

Following task analysis, process analysis attempts to discover which tasks (i.e., their
corresponding workspaces) are likely part of the same process. This begins by examin-
ing shared task elements, traversal patterns, and handover points, as discussed earlier.
Table 19.1 shows an extract from the top of the list of all candidate pairs of workspaces
under consideration, together with their individual and total process predictor values.
The table shows, for example, that the two workspaces “Plan Preparation” and “Pro-
pose Change,” listed at the top, have 10 items in common, were involved in traversals
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Table 19.1. Process predictor values for candidate workspace pairs (extract).

Shared Handover Total Process

Workspace 1 Workspace 2 elements Traversals points Predictor Value

Plan preparation Propose Change 10 3 1 14

Coordination Plan preparation 9 1 2 12

Plan monitoring Plan preparation 5 7 0 12

Plan monitoring Problem identification 7 4 1 12

.

.

.
.
.
.

.

.

.
.
.
.

.
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from one to the other workspace 3 times, and have 1 item that serves as a handover
point, that is, constitutes the outcome of one task and the input of the next, yielding
a total process predictor value of 14.

Following the derivation of these process predictor values, those pairs of
workspaces for which the value is below the defined threshold are eliminated from
further consideration. In this case the threshold was set at 3, below which predictors
were insignificant in predicting process membership. This left 13 pairs of workspaces,
which next were linked together into a task network according to the established rela-
tionship. By adding shared roles and artefacts, this network was augmented to produce
a process rich picture. The cluster of workspaces is shown in the inter-workspace map
of Figure 19.16, and the corresponding rich picture is shown in Figure 19.17.

Both of these figures reveal the greatly interconnected nature of the tasks in this
process: most of the tasks (i.e., their corresponding workspaces) share a majority of
both artefacts and roles, and every task has some relationship to every other task. This
is typical of collaborative and knowledge-intensive work processes, which have been

Architect
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Discuss
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Criteria

Fig. 19.15. Corresponding MOO diagram capturing essential aspects of the “Propose Change”

workspace.
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Fig. 19.16. Inter-workspace map showing a cluster of workspaces.
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Fig. 19.17. Rich picture of the corresponding tasks of the workspace cluster.
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Fig. 19.18. Task sequence model derived from the analyzed actions in the virtual workspace.

described in the literature as resulting in “disconnected and parallel work that must
nevertheless be guided to a common goal” [12].

19.4.3 Temporal Analysis

The final step of reverse engineering consists of performing temporal analysis on
the actions in the workspaces of the derived process model in order to obtain a task
sequence model. First, the history of actions in the workspaces is broken down into
chunks, in this case at the level of days. Based on the distribution of action levels per
day, which ranged from a minimum of 1 to a maximum of 120, with the majority
of workspaces having action levels in the 10–20 range on most days, a threshold of
5 was set to distinguish tasks. Below this value, an excessive number of task switches
resulted, often incurred only for such “tasks” as entering another workspace to look
up a document or discussion item.

Temporal analysis then obtained sequences of task switches, which were consoli-
dated into the task sequence model shown in Figure 19.18. The temporal analysis re-
vealed that tasks in this process were tightly integrated: not only was work interleaved,
with frequent switching between tasks, but also was it often parallel. Nonetheless, the
transition diagram in Figure 19.18 does reveal definite patterns of task switching.

For example, there is only unidirectional switching in five cases (such as from Plan
monitoring to Problem identification), and bidirectional switching in four cases (such
as between Plan monitoring and Coordination). Certain potential paths do not exist at
all (e.g., there is no switch between Plan preparation and Problem identification). This
indicates to us that even in such relatively poorly structured processes—as compared
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to workflow processes—certain patterns of work emerge, which are reflected in the
collected collaboration data and subsequently the derived process models.

19.5 Conclusions and Future Work

The availability of information about virtual collaboration in virtual workspaces, in
the form of action patterns, offers opportunity for utilization of such information and
its future reuse. This chapter has presented a novel methodology for reverse engineer-
ing of virtual collaboration (expressed as work processes performed through virtual
workspaces). It produces design models at micro (task) and macro (process) levels
of these processes using notations from a (forward engineering) design methodology
intended for virtual collaboration. Through the presented methodology, it not only
becomes possible to trace the evolution of processes from an initial design, in the case
where such a design has been performed, but also allows the discovery of ad hoc and
emergent processes for which no such initial design was prepared. In both cases, pro-
cesses obtained through reverse engineering can be retained in a library (case-base)
of reusable process templates.

The methodology is based on the combination of a new model of vertical informa-
tion integration related to virtual collaboration (the Information Pyramid of Virtual
Collaboration), which encompasses information about objects and actions that make
up action patterns at different levels of granularity. Information at these levels ranges
from fine-grained system events to entire work processes, integrated through defined
transformations that specify how an information item on one level can be derived from
information items on a lower level. Definitions of information at different levels, and
of transformations, are specified in an ontology of a given collaboration system. The
complete information model makes it possible to abstract from fine-grained events
to large-scale work activities and to drill down from larger scale activities to their
constituent smaller scale activities.

The integration of the information pyramid and the “Space-Data-Memory” frame-
work provides the basis of a process reverse-engineering methodology for discover-
ing knowledge about collaboration processes in virtual workspaces. The presented
methodology is independent of the underlying collaboration system employed, and
requires only knowledge of its ontology. Only the concrete implementation of the data
mining methods used needs to be adapted to the given collaboration system so as to
capture different elements needed in the calculation of process predictors. Likewise,
the interpretation of discovered patterns will need to be framed in the context of the
collaboration system utilized.

Our proposed approach has also the potential to influence the way collaboration
systems are designed or redesigned. Insights obtained through the analysis of collabo-
ration processes can, for example, reveal deficiencies in the levels of support provided
by a particular collaboration system implementation, leading to a redesign of a future
version of the system. In this way, the approach can become the backbone of a new
design methodology—design of collaboration systems by adaptation.

Finally, the illustrated combination of data mining techniques and reverse engi-
neering, and the availability of a rich source of data on actual collaborative practices,



P1: OTE/SPH P2: OTE

SVNY295-Petrushin November 1, 2006 11:41

19. Virtual Workspace Design Through Media Mining and Reverse Engineering 403

can lead to a better understanding of the influence of computer mediation on collab-
orative processes. Future work will be focused on the analysis of the artefacts and
their content involved in the collaboration process.
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20. A Time-Constrained Sequential Pattern
Mining for Extracting Semantic Events
in Videos

Kimiaki Shirahama, Koichi Ideno, and Kuniaki Uehara

Summary. In this chapter, we present a time-constrained sequential pattern mining method

for extracting semantic patterns associated with semantically relevant events (semantic events)

in videos. Since a video itself is just a raw material, we transform the video into a multistream of

raw level metadata. This multistream not only characterizes the semantic events in the video but

also can be operated by data mining technique. Then, we extract semantic patterns as sequential

patterns, each of which is a temporally ordered set of raw level metadata. At this time, regarding

the temporal characteristics of the video, we introduce two types of time constraints: semantic
event boundaries and temporal localities to eliminate sequential patterns which are unlikely to

be semantic patterns. Furthermore, by taking the high computational cost of our mining method

into account, we also present a method for parallelizing the pattern mining process. Finally, we

evaluate the effectivenesses of raw level metadata, our mining method, and extracted semantic

patterns.

20.1 Introduction

Data mining is a technique to discover previously unknown and interesting patterns
from a large amount of data. These patterns are high-level descriptions of underlying
low-level data. Discovering patterns such as customer’s purchase for marketing or
network access for intrusion detection benefits the users in various fields. In this
context, our data mining is dealing with video data called video data mining. Our
task is to discover semantic patterns that are associated with semantically relevant
events (semantic events) in the video, to support the user’s content-based access to
the unstructured video, where there is no clear structure to describe its rich and
complicated semantic contents [1].

There exists a crucial difference between the traditional alpha-numeric data and
video data. Data mining conventionally deals with data whose alpha-numeric repre-
sentation directly describes the semantic contents of the data and relationship opera-
tors (e.g., equal, not equal, etc.) are well-defined [1]. On the other hand, the digitized
representation of video data cannot directly describe the semantic contents of the
video and relationship operators are ill-defined. Thus, a video itself is just a raw ma-
terial that is computationally intractable. To extract semantic patterns from the video,
we should first derive raw level metadata. This is one of the most important tasks

404
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Fig. 20.1. An example of the semantic information of a video, conveyed through video and

audio media.

since the derivation of raw level metadata constructs the building blocks for video
data mining [2]. Then, video data mining can be achieved by applying data mining
techniques to the raw level metadata.

In general, a video involves two types of media: video and audio media. They are
known as continuous media [3]. As shown in Figure 20.1, video and audio media are
sequences of media quanta (i.e., video frames and audio samples) that convey their
semantic contents only when media quanta are continuously played in terms of time.
Therefore, the semantic information of the video is time-dependent.

To efficiently handle such a time-dependent semantic information, it is useful to
define two types of aspects of the semantic information: spatial and temporal aspects.
A spatial aspect means a semantic content presented by a video frame, such as the
location, characters, and objects shown in the video frame. A temporal aspect means
a semantic content presented by a sequence of video frames in terms of temporal
order, like a change of locations, character’s action, and object’s movement presented
in the sequence.

A shot is a segment of video frames recorded continuously by a single camera. The
shot is a basic physical unit to successfully capture the spatial and temporal aspects
in a video [4]. But, as shown in Figure 20.1, the shot cannot convey a semantic event
by itself. Figure 20.1 describes that adjacent shots form a continuous semantic event.
For example, the leftmost semantic event consists of four separate shots. From this
point of view, we define a semantic pattern as a sequential pattern that sequentially
relates the adjacent shots.

To extract the above semantic patterns from a video, we first construct a mul-
tistream of raw level metadata derived from each shot sequentially. After that, we
extract sequential patterns from the multistream. In this process, we should con-
sider the following two types of temporal characteristics of the video: semantic event
boundaries and temporal localities. A semantic event boundary is namely a boundary
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between two consecutive semantic events, where the viewer can recognize an impor-
tant change on semantic contents, such as change of character’s action and change of
the location. For instance, in Figure 20.1, the character A drives her car in the leftmost
event, while A waits for her boyfriend outside her car in the next event. Hence, a se-
mantic event boundary can be found between the forth and fifth shots from the left in
Figure 20.1.

A temporal locality means that the shots in the same semantic event have to be
temporally close to each other [5–7]. For example, in Figure 20.1, the same char-
acter A appears in the three shots, shot 1, shot 2, and shot 3. shot 1 is temporally
very close to shot 2, while shot 3 is far from both shot 1 and shot 2. At this time,
shot 1 and shot 2 are more likely to be included in the same semantic event. On the
other hand, the semantic event of shot 3 should be different from that of shot 1 and
shot 2 because several different semantic events may be appeared between shot 2
and shot 3. We utilize semantic event boundaries and temporal localities as time con-
straints to eliminate sequential patterns that are unlikely to be associated with semantic
events.

20.2 Related Works

In this section, we review previous works in the research fields of video data mining
and sequential pattern mining. We also describe our contributions of this chapter to
both research fields.

20.2.1 Video Data Mining

For efficient video data management, such as content-based video indexing, retrieval
and browsing, many video data mining approaches have been proposed in recent
years [2, 6–11]. Pan et al. extracted some patterns of news and commercial video
clips for content-based video retrieval and browsing [8]. Specifically, they extracted
essential characteristics of news and commercial video clips by applying Independent
Component Analysis (ICA) to a n-by-n-by-n cube which can represent both spatial
and temporal video (or audio) information in a video clip.

Pan et al. also extracted some patterns of plot evolutions of news and commercial
video clips [9]. Given a video clip, they group similar shots into shot-groups based
on DCT coefficients of I-frames in a shot. It leads to detect basic shot-groups that
contain shots that often appear in the video clip. The graph of these basic shot-groups
reveals the plot structure of the video clip. They reported that such graphes for news
and commercial video clips are quite different from each other.

Oh et al. extracted some patterns of object’s appearance and disappearance in a
surveillance video [2]. They group incoming frames obtained from a fixed camera
into segments of different categories. Furthermore, each segment is indexed by its
motion feature that is defined as an accumulated difference of two consecutive frames
in the segment. Finally, segments are clustered again into groups of similar segments
based on segment’s category and motion.
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Zhu et al. extracted sequential patterns of shots for addressing video semantic
units (e.g., events, scenes, and scenario information) in news, medical and basketball
videos [6, 7]. To begin with, they cluster shots into groups of visually similar shots
and construct a sequence consisting of the group names. Then, sequential patterns of
shots with strong temporal correlations are extracted from the sequence.

All of the above video data mining approaches extract semantic patterns only
from rule-dependent videos, where there are apparent rules associated with semantic
events. For example, in the interview events of news videos, a shot where an inter-
viewer appears, followed by that of an interviewee, is repeated one after the other [8].
Similarly, in goal events on ball game videos, the score in the telop changes after
audience’s cheers and applause occur [7]. Also, in surveillance videos recorded with
fixed cameras, if an object actively moves, the difference between two consecutive
frames is clearly large [2]. Like this, these apparent rules tell what kind of raw level
metadata should be used to extract semantic patterns in rule-dependent videos. Thus,
the extracted semantic patterns are not previously unknown but previously known.

Compared with the above rule-dependent videos, we extract semantic patterns
from rule-independent videos (e.g., movies), where there is no apparent rule that
characterizes any kind of semantic events. For example, battle events in movies are
presented in various ways, depending on semantically arbitrary factors, such as char-
acters, weapons, location, time, and weather. Hence, neither what kind of raw level
metadata should be used nor what kind of semantic patterns are extracted can be
determined in advance. With respect to this point, we use several types of raw level
metadata accepted as useful in the fields of image, video and audio processing re-
searches. By using these raw level metadata, we can extract previously unknown
semantic patterns from rule-independent videos.

There are some studies for video data mining on rule-independent movies [10–
12]. Wijesekera et al. proposed a video data mining framework on movies by using
existing audio and video analysis techniques [10]. They also examined the suitability
of applying existing both data mining concepts and algorithms to multimedia data,
although no experimental result was reported. In [11], we extracted two types of
editing patterns from movies: cinematic rules and frequent events. Cinematic rules
are not semantic patterns because they do not characterize any kind of semantic events
but are editing patterns for successfully conveying the editor’s idea to the viewers.
Frequent events are semantic patterns, but they are previously known. The reason
is that metadata used to extract these patterns (e.g., Character’s name, Direction of
character’s gaze, Character’s motion, and Sound type) represent considerably high
semantic contents by themselves.

In [12], we extracted character’s appearance and disappearance patterns for char-
acterizing topics, each of which corresponds to a semantic event where the character
plays a particular action and role in the movie. For instance, the character talks to
someone or makes love with a partner in a topic. This kind of topic can be detected as
an interval where durations of character’s appearance and disappearance are roughly
constant. But, semantic contents in the topic, such as what action the character per-
forms and what kind of situation the topic involves, cannot be identified by only using
character’s appearance and disappearance.
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20.2.2 Sequential Pattern Mining

Extracting sequential patterns from categorical streams is a research area of great
interest in data mining. A categorical stream is defined as a sequence on a set of
finite kinds of symbols. This task is challenging, because a search space of possible
sequential patterns is extremely large. As described in [13], even in the case of a one-
dimensional stream defined on a set of n kinds of symbols, there are O(nk) possible
sequential patterns of time length k. In order to efficiently extract sequential patterns
from categorical streams, many methods have been proposed [6, 7, 11, 13–23]. As
shown in Table 20.1, these methods are classified into six categories, in terms of the
number of dimensions of a categorical stream and a search technique for reducing
the extremely large search space.

The number of dimensions of a categorical stream greatly affects the efficiency
of the sequential pattern extraction. As a simple example, suppose m-dimensional
multistream, where each component stream contains n kinds of symbols. In this
multistream, there are O(nmk) possible sequential patterns of time length k. Like
this, extracting sequential patterns from a multistream requires much more expensive
search than that of a one-dimensional stream. With respect to this problem, Tanaka
et al. transformed an original multistream into a one-dimensional stream by using
Principle Component Analysis (PCA) [23]. This kind of transformation approach
was also proposed by Zhu et al., where they used a re-arrangement mechanism to
maintain the original temporal order [7].

Search techniques can be classified into the following three types: window-based,
apriori–based, and two-step approaches. A window-based approach scans a given
stream by sliding the window of a user-specified time length [24]. Sequential patterns
are extracted as sets of symbols within the window, which are validated by the sliding
window scan. The window-based approach limits a search space of possible sequential
patterns since the time length of any extracted sequential pattern is up to window’s
length. The user needs to specify the maximum time length of extracted sequential
patterns in advance.

Chudova et al. extracted fixed-length sequential patterns by using a Hidden
Markov Model (HMM) [21]. The HMM has k states for modeling symbols included
in a pattern of time length k and one state for modeling symbols which are not in
the pattern. By learning the parameters of the HMM, the symbol that is the most
likely symbol to appear in the i-th position in the pattern is determined. Eventually,
this approach and the window-based approach heavily rely on a priori knowledge of

Table 20.1. The classification of sequential pattern mining

methods in terms of the number of dimensions of a

categorical stream and a search technique.

One-dimension Multi-dimensions

Window–based [19] [20] [21] [16] [17] [13]

Apriori–based [6] [7] [14] [15] [18] [11]

Two–steps [22] [23]
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extracted sequential patterns, so both of them may be more generally called model-
based approaches.

An apriori–based approach iteratively extracts longer sequential patterns from
shorter ones. Each iteration starts with the generation of candidate patterns, each
of which is generated by concatenating a symbol (or a set of symbols) to a pattern
extracted in the previous iteration. It follows that candidate patterns that are unlikely
to be patterns are eliminated. Finally, the remaining candidate patterns are examined
whether they are actually sequential patterns or not. This iteration terminates when no
more sequential pattern is extracted. Like this, the apriori–based approach efficiently
and dynamically reduces the search space of possible sequential patterns in the given
stream.

A two-step approach namely follows two steps for the extraction of sequential
patterns. In the first step, some criteria are used to obtain the optimum time length
of sequential patterns to be extracted. For example, Tanaka et al. computed such an
optimum time length by using Minimum Description Length (MDL) principle [23].
Also, Berberids et al. computed the optimum time length by using the autocorrelation
function [22]. The optimum time length obtained in the first step is used to reduce
the search space of possible time lengths of sequential patterns in the second step.
Like this, the two-step approach can be considered as an extended window-based ap-
proach. Specifically, the time length of extracted sequential patterns is automatically
obtained in the two-step approach while it is user-specified in a window-based ap-
proach. Finally, in Table 20.1, we could not find any two-step approach for extracting
sequential patterns from a multi-dimensional categorical stream.

Our method extracts sequential patterns from a multi-dimensional categorical
stream using an apriori–based approach. So, our method is classified into the same
category to [11, 14, 15, 18] in Table 20.1. To eliminate sequential patterns that are
unlikely to be semantic patterns, we incorporate two types of a priori information
specific to video data: semantic event boundaries and temporal localities. In addition,
there are many possibilities to locate a sequential pattern in the stream. Thus, how to
locate the sequential pattern in the stream is a very important issue. But, it has never
been discussed in the previous works listed in Table 20.1. We propose a method for
finding the location of the sequential pattern in the stream. Finally, we also propose a
method for parallelizing the process of our mining method, since it requires multiple
scans over the stream to locate each candidate pattern.

20.3 Raw Level Metadata

In this section, we give a detail explanation about raw level metadata used to char-
acterize the spatial and temporal aspects in a shot. Note that each type of raw level
metadata is a categorical value. Consequently, deriving several types of raw level
metadata from the shot can be considered as a discretization of the spatially and tem-
porally continuous semantic content into a set of categorical values. By sequentially
aggregating raw level metadata, we can obtain a multistream of raw level metadata
shown in Figure 20.2.



P1: OTE/SPH P2: OTE

SVNY295-Petrushin September 19, 2006 16:41

410 Kimiaki Shirahama, Koichi Ideno, and Kuniaki Uehara

Time

Shot No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

stream 3 CV: CV2 CV2 CV3 CV0 CV1 CV0 CV0 CV0 CV0 CV0 CV0 CV0 CV0 CV1

stream 2 CS: CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS4 CS0

CH4stream 1 CH: CH7 CH3 CH2 CH7 CH6 CH6 CH6 CH6 CH6 CH6 CH6 CH2 CH2

stream 4 LN: LN3 LN3 LN2 LN1 LN1 LN2 LN3 LN1 LN3 LN3 LN1 LN2 LN1 LN1

stream 5 LL: LL0 LL3 LL1 LL0 LL1 LL1 LL3 LL0 LL0 LL1 LL0 LL0 LL0 LL0

stream 6 LB: LB2 LB0 LB3 LB2 LB2 LB0 LB1 LB0 LB1 LB1 LB1 LB3 LB0 LB2

stream 7 SA: SA2 SA2 SA1 SA1 SA2 SA2 SA2 SA2 SA2 SA2 SA2 SA2 SA1 SA2

stream 8 LA: LA0 LA2 LA1 LA0 LA0 LA1LA0 LA0 LA0 LA0 LA0 LA0 LA0 LA1

stream 9 SL: SL4 SL4 SL3 SL4 SL4 SL1 SL1 SL1 SL1 SL2 SL1 SL0 SL0 SL0

stream 10 MS: MS3 MS3 MS2 MS4 MS5 MS4 MS4 MS4 MS4 MS4 MS3 MS3 MS0 MS0

stream 11 MV: MV1 MV4 MV0 MV1 MV0 MV0 MV1 MV1 MV0 MV0 MV0 MV0 MV3 MV2

stream 12 SM: SM1 SM1 SM1 SM1 SM1 SM1 SM1 SM1 SM1 SM1 SM1 SM2 SM0 SM0

stream 13 AM: AM1 AM3 AM2 AM3 AM3 AM2 AM3 AM3 AM2 AM2 AM2 AM2 AM2 AM2

Fig. 20.2. An example of a multistream of raw level metadata, where several types of raw level

metadata are derived from each shot in a video.

Since the spatial aspects presented by the video frames are continuous, we assume
that the salient spatial aspect is represented by the middle video frame in a shot, called
keyframe. One can change the definition of a keyframe [5, 6, 8]. Anyway, we derive
the following types of raw level metadata from the keyframe:

CH: CH reflects the semantic content about the background or dominant object in
a keyframe, such as water, sky/clouds, snow, fire, and human face [25]. CH repre-
sents the color composition in the keyframe on H(ue) axis of HSV color space. We
first compute the intensity histogram on H axis for each keyframe. Then, we cluster
keyframes into groups with similar histograms, where we use k-means algorithm as
a clustering algorithm [26] and histogram intersection as a distance measure [27].
Finally, we assign the categorical value of CH to each keyframe by analyzing the
cluster including the keyframe.
CS: Similar to CH, CS reflects the semantic content about the background or dominant
object in a keyframe. But, CS characterizes a keyframe that contains objects with
saturated colors, such as fruits, flowers, and man-made objects. CS represents the
color composition in the keyframe on S(aturation) axis of HSV color space. We assign
the categorical value of CS to each keyframe by using the k-means clustering method.
CV: Unlike CH and CS, CV reflects the semantic content about the brightness in
a keyframe, such as bright and dark. CV represents the color composition in the
keyframe on V(alue) axis of HSV color space. Categorical values of CV are also
assigned by the k-means clustering method.
LN: LN basically reflects the number of objects displayed in a keyframe. This means
that the more objects are displayed in the keyframe, the more straight lines tend to
be derived from the keyframe. On the other hand, objects’ boundaries are obscure
in a keyframe in a night or foggy situation, and few straight lines are derived. LN
represents the number of straight lines contained in the keyframe. We assign the
categorical value of LN to each keyframe by comparing the number of straight lines
in the keyframe with some threshold values.
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LL: LL reflects the shape feature of man-made objects in a keyframe, for instance,
buildings and windows have long straight lines that define these objects’ bound-
aries. To be exact, LL represents the distribution of straight line lengths in the
keyframe. In order to assign such a categorical value of LL to each keyframe, we
compute the intensity histogram of the lengths of straight lines. This histogram is
then normalized so that it is independent of the number of straight lines. Finally, we
assign the categorical value of LL to each keyframe by using the k-means clustering
method.
LB: LB reflects the dominant direction of most straight lines contained in a keyframe.
For example, buildings and windows have vertical straight lines, while a natural scene
has different directions of straight lines [25]. Thus, LB represents the distribution of
straight line directions in the keyframe. As with LL, we compute the normalized
histogram of straight line directions. Then, we assign the categorical value of LB to
the keyframe by using the k-means clustering method.
SA: SA reflects the size of the main character displayed in a keyframe. SA represents
the area of the largest skin colored region in the keyframe. We assign the categorical
value of SA to each keyframe by comparing the area of the largest skin colored region
with some threshold values.
LA: LA reflects the presence of weapons in a keyframe. Note that keyframes where
laser-beams from weapons are presented have some large light colored regions. On
the other hand, keyframes where sunshines (or lighting effects) are presented, not
only have some large light colored regions, but also have many small light colored
blobs due to the light dispersions. Based on the above observation, LA represents the
area of the largest light colored region, divided by the total number of light colored
regions in a keyframe. By comparing this value with some threshold values, we assign
the categorical value of LA to the keyframe.

The above types of raw level metadata are derived by using functions prepared in
OpenCV library [28]. Besides these types of raw level metadata for characterizing the
spatial aspect, we derive the following types of raw level metadata for characterizing
the temporal aspect.
SL: SL represents the duration of a shot. In other words, SL represents the speed of
the camera switching from a shot to the next shot. Generally, thrilling events, such
as battles and chases, are presented by shots with short durations, while romantic
events, such as hugging and kissing, are presented by shots with long durations. We
assign the categorical value of SL to each shot by comparing its duration with some
threshold values.
MS: MS represents the movement of some objects or background in a shot. For
example, in a shot where characters actively move or the background significantly
changes, the movement is large, whereas the movement is small when characters are
still and the background hardly changes. To extract the movement, we select MPEG as
the video format. Because MPEG compresses a video by predicting the color change
between two consecutive video frames. The size and direction of the predicted color
change are represented as a motion vector. Every motion vector is defined in a macro
block which is a unit block consisting of 16 × 16 pixels. On the basis of this definition
of motion vector, the movement is defined as a sum of motion vector sizes in all macro
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blocks. We assign the categorical value of MS by comparing the movement with some
threshold values.
MV: MV represents the direction of movement of objects or the background in a shot.
For example, in a shot where characters move to a certain direction, the direction of
the movement is constant, whereas the movement has no direction in a shot where
characters are still. The direction of movement is defined as follows: we prepare four
direction counters: up, down, left, and right. These counters are used to count the
directions of motion vectors in all macro blocks. If the count in every direction is
smaller than the threshold value, no direction is assigned to the shot. Otherwise, the
direction with the largest count is assigned to the shot.
SM: SM represents the sound type that frequently appears in a shot, such as speech,
music, and no-sound . For example, speech frequently appears in a shot where
characters are talking. On the other hand, music frequently appears in a shot where
BGM with large sound volume is used. We assign the categorical value of SM to
each shot in the following way: we convert the sound stream into Mel-Frequency
Cepstrum Coefficients (MFCCs). The MFCCs are compared with a human voice
model and music model constructed by using Gaussian Mixture Model (GMM) [29].
As a result, we can assign a categorical value of SM to the shot.
AM: AM represents the largest sound volume in a shot. For example, a shot that
involves a scream, explosion, or gunshot has a large sound volume, while a shot with
a chat or infiltration has a small sound volume. We assign the categorical value of AM
to each shot by comparing the maximum amplitude of the sound stream with some
threshold values.

Finally, by deriving raw level metadata from each shot, the video is trans-
formed from a computationally intractable raw material into a 13-dimensional
categorical stream. An example of this categorical stream is presented in Figure 20.2.
In Figure 20.2, each component stream is constructed for one type of raw level meta-
data. A symbol in the stream consists of two capital letters representing the type of
raw level metadata and the number representing the categorical value. For example,
stream 1 is constructed for C H and the symbol C H4 in shot 1 represents that the
categorical value 4 is assigned to shot 1.

20.4 Time-Constrained Sequential Pattern Mining

In this section, we present our time-constrained sequential pattern mining method
to extract sequential patterns from a multi-dimensional categorical stream. First of
all, we formally define sequential patterns together with time constraints. Then, we
present our mining algorithm with time constraints. Finally, we extend our algorithm
for parallelizing the mining process.

20.4.1 Formulation

We assume a multi-dimensional categorical stream S, where none of the same symbol
occurs in different component streams of S. A symbol v that occurs in a component
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Fig. 20.3. An example of a multi-dimensional categorical stream S where only the occurrence

of a 4-pattern p4 = (A2, nil), (C3, parallel), (C4, serial), (E1, serial) from the time point t = 1

to t = 4 satisfies both SE B and T DT time constraints.

stream s at a time point t can be represented as (v, t) because v does not occur in
the other component streams. An example of such a multi-dimensional categorical
stream is shown in Figure 20.3, where the capital letter in the left side indicates the
component stream name and the number in the right side indicates the categorical
value. Thus, the symbol A2 occurring in stream A at the time point 1 is represented
as (A2, 1).

For any pair of two symbols in S, the relative temporal relationship is either serial
or parallel.1 For example, the relationship between (A2, 1) and (C3, 1) is parallel;
that is, these symbols occur at the same time point. On the other hand, the relationship
between (C3, 1) and (C4, 2) is serial; that is, these symbols occur at different time
points. Note that a serial relationship does not require that two symbols belong to
the same component stream, so the relationship between (C4, 2) and (E1, 4) is also
serial. For two symbols (v1, t1) and (v2, t2), the serial and parallel relationships are
formulated as follows:

t1 �= t2 −→ serial,
t1 = t2 −→ parallel.

(20.1)

Now we define a sequential pattern pl as a temporally ordered set of l symbols
and call pl as l-pattern. In Figure 20.3, 4-pattern p4 is presented by the temporally
ordered set of 4 symbols surrounded by the circles. For pl , we represent the temporal
order of l symbols as a sequence of serial and parallel relationships between two
consecutive symbols. Therefore, pl is formulated as follows:

pl = (v1, nil), (v2, tr2), (v3, tr3), . . . , (vl , trl), (20.2)

where for all i = 2, . . . , l, (vi , tri ) represents a symbol vi whose relationship with
(vi−1, tri−1) is tri (i.e., tri = serial or tri = parallel). In Figure 20.3, p4 is denoted as
p4 = (A2, nil), (C3, parallel), (C4, serial), (E1, serial). In the above equation (20.2),
if tri = serial, the serial relationship between (vi , tri = serial) and (vi−1, tri−1) is
restricted by the following two types of time constraints:

1 Our usage of a serial and parallel relationships is different from those of [16].
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Semantic event boundaries: A multi-dimensional categorical stream S can be di-
vided into some semantic events. For example, a stream of highway traffic
sensor data can be divided into semantic events of different traffic conditions.
An e-mail stream can be divided into semantic events where certain topics
appear [30]. By restricting an occurrence of pl in one semantic event, pl can
become a useful sequential pattern associated with a certain semantic content
in S. Thus, the serial relationship between (vi−1, tri−1) and (vi , tri ) must not
cross over any Semantic Event Boundaries (SEBs). In Figure 20.3, where two
SEBs (SEB1 and SEB2) are shown, it is not acceptable that p4 occurs between
the time point t = 5 and t = 9, because the serial relationship between (C3, 5)
and (C4, 7) crosses over SEB1.

Temporal localities: Using only SEB time constraint falls into extracting many se-
quential patterns that are not relevant to semantic patterns. Thus, we further use
the time constraint proposed in [6,7]. Considering temporal localities that two
shots in the same semantic event have to be temporally close to each other, two
consecutive symbols in pl have to be temporally close to each other.2 Hence,
in order for pl to be a semantic pattern, the relative temporal distance between
(vi−1, tri−1) and (vi , tri ) must be less than Temporal Distance Threshold (TDT).
In Figure 20.3, where TDT is set to 2, it is not acceptable that p4 occurs be-
tween the time point t = 9 and t = 14 because the temporal distance between
(C4, 11) and (E1, 14) is 3.

By using SEB and TDT time constraints, we do not count occurrences of pl , which
are irrelevant to a semantic pattern. As a result, we can avoid extracting unnecessary
sequential patterns that are unlikely to be semantic patterns. In Figure 20.3, only
the occurrence of p4 between t = 1 and t = 4 satisfies both SEB and TDT time
constraints. It should be noted that pl is just a template that specifies the temporal
order of l symbols where each symbol is denoted as (vi , tri ). In contrast, an occurrence
of pl is an actual instance of pl where each symbol is detected by using (vi , ti ) in S.

20.4.2 Mining Algorithm

As described in Section 20.2.2, our mining algorithm extracts sequential patterns
from a multi-dimensional categorical stream S by using an apriori–based approach.
It is outlined below:

Process 1: Initialize l = 1. l is a number of symbols included in a pattern. Subse-
quently, extract every 1-pattern p1 from S, which satisfies an interestingness measure
f . Here, f is used to measure the usefulness of each candidate pattern in order to
determine whether it is regarded as a pattern or not.
Process 2: Increment l, and generate a set of candidate l-patterns from the set of
(l − 1)-patterns.

2 Apart from video data, this time constraint has been applied to various kinds of data such as
transactional data [15] and biological data [31].
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Process 3: Locate each candidate l-pattern cpl in S by taking SEB and TDT time
constraints into account, and count the number of cpl’s occurrences in S. Then,
regard cpl as a l-pattern pl only if cpl satisfies f .
Process 4: If no pl is extracted, terminates the mining process. Otherwise, go to
process 2.

In order to complete our mining algorithm, we need to discuss the following three
issues in more detail: how to generate candidate patterns at process 2, how to locate
cpl in S at process 3, and how to define f at process 1 and 3.

20.4.2.1 Generating Candidate Patterns

Although the definition of a sequential pattern in [14] is different from our definition,
an efficient algorithm of candidate pattern generation is presented in [14]. So, we
revise this algorithm to generate a set of candidate l-patterns from the set of (l − 1)-
patterns extracted in the previous iteration. Figure 20.4 illustrates the generation of
a candidate l-pattern cpl from two (l − 1)-patterns pl−1 and p′

l−1. In Figure 20.4,
we select the following pl−1 and p′

l−1: the temporally ordered set of l − 2 symbols
generated by removing the first symbol (v1, nil) from pl−1, is exactly the same as
the one generated by removing the last symbol (v′

l−1, tr ′
l−1) from p′

l−1. Note that the
symbol (v2, tr2) is replaced with (v2, nil), because it is now the starting symbol in
the temporally ordered set of l − 2 symbols. Then, cpl is generated by concatenating
(v′

l−1, tr ′
l−1) and pl−1.

Locating all candidate l-patterns in S needs much more expensive computational
cost. Hence, we should delete candidate l-patterns which are unlikely to become
l-patterns without searching them in S. For cpl , we remove any (vi , parallel) from
cpl to form a temporally ordered set of l − 1 symbols. Note that even if we delete
(vi , parallel) from cpl , the original temporal order of cpl is preserved. Therefore, all
of the above temporally ordered sets of l − 1 symbols have to be already extracted as
(l − 1)-patterns. Otherwise, it is impossible for cpl to be pl and thus delete cpl from
the set of candidate l-patterns.

p′l – 1 (v′ , tr′ )2 2(v′ , nil)1

(v  , nil)1 (v  , tr  )2 2 (v  , tr  )3 3 (v     ,  tr    )l – 2 l – 2 (v    ,  tr    )l – 1 l – 1 (v ′    ,  tr ′   )l – 1 l – 1

(v    , tr    )l – 2 l – 2 (v     , tr    )l – 1 l – 1

(v    ,  tr    )l – 3 l – 3 (v ′    ,  tr ′   )l – 2 l – 2 (v ′    , tr ′   )l – 1 l – 1

cp
l

p l – 1

p l – 1 (v  , nil)1 (v  , tr  )2 2 (v  , tr  )3 3

(v  , nil)2

Fig. 20.4. An illustration of the generation of a candidate l-pattern cpl from two (l − 1)-

patterns, pl−1 and p′
l−1.
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20.4.2.2 Locating a Candidate Pattern in the Stream

The outline of our approach for locating pl in S is illustrated in Figure 20.5. In
the stream A, a symbol (A1, t) (t = 1, 2, 3, 5, 6, 8) represents “the woman appears
at a time point t (i.e. in a shot t),” and a symbol (A2, t) (t = 4, 7) represents “the
woman does not appear at t .” In this condition, we discuss locating 2-pattern p2 =
(A1, nil), (A1, serial) by focusing on the three occurrences: Occ1, Occ2, and Occ3.
The semantic contents represented by these occurrences are as follows:

� Occ1 · · · The woman meets the man, and she talks to him.
� Occ2 · · · The woman meets the man, and she walks with him.
� Occ3 · · · The woman meets the man, and she drives her car.

Occ3 is clearly meaningless because it spans two different semantic events. Such an
occurrence can be prevented by SEB time constraint. Occ1 is assumed to be more
meaningful than Occ2. It is because, based on the discussion of temporal localities in
Section 20.1, a serial relationship occurring in a short temporal distance between two
symbols is assumed to represent a coherent semantic content. Thus, if there are some
possible occurrences of the serial relationship within the temporal distance specified
by TDT time constraint, the serial relationship is located by using the shortest temporal
distance like Occ1 in Figure 20.5.

Figure 20.6 illustrates our approach for locating 3-pattern p3 in S. In Figure
20.6, where TDT is set to 3, by tracing along the solid arrows, we can find three
occurrences of p3. In addition to SEB and TDT time constraints, we further introduce
the search constraint represented by three dashed arrows. That is, if (v, t) is used to
find an occurrence of pl , (v, t) cannot be used to find any later occurrences of pl .
For example, the leftmost dashed arrow represents that (B1, 3) is used to find p3’s
occurrence starting from t = 1; thus, it cannot be used again and (B1, 4) is used to
find p3’s occurrence starting from t = 2. We call a symbol (v, t), which has not yet
been used to find any pl’s occurrence unused.

We describe the reason why we search pl’s occurrences by using only unused
symbols. Suppose that, in Figure 20.6, (B1, 3) is used by (A3, 1) and (A3, 2) to find
p3’s occurrences. Consequently, at the time point t = 5, two p3’s occurrences are
counted, which is contradictory to that two different occurrences end at different time
points. Hence, we use only unused symbols to detect p3’s occurrences.

1 2 3 6 7 84 5

A1 A2A1 A1 A1 A1 A1A2

SEB

time

stream A

1Occ

2Occ

3Occ

Fig. 20.5. An example of occurrences of 2-pattern p2 = (A1, nil), (A1, serial), where Occ1

represents the most coherent semantic content among three occurrences.
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Fig. 20.6. An example of our approach for locating p3 = (A3, nil), (B1, serial), (C2, serial)

in S, where T DT = 3 and three occurrences of p3 are located.

Now, we describe our algorithm for locating pl in S. Our algorithm finds pl’s
occurrences one by one according to the temporal order. For example, in Figure
20.6, the occurrence of p3 starting from t = 1 is firstly detected, the occurrence from
t = 2 is secondly detected, and the occurrence from t = 4 is thirdly detected. In each
detection of pl’s occurrence, our algorithm switches Forward and Backward phases
introduced in [15]. But, in order to deal with SEB and TDT time constraints and the
above search constraint, we extend Forward and Backward phases. Suppose that we
are now searching an occurrence of pl where the first i symbols are already detected
as (v1, t1), . . . , (vi , ti ).

Forward phase: On the basis of the already detected symbols, we select a symbol
(vi+1, ti+1) for the (i + 1)-th symbol.

If the (i + 1)-th temporal relationship is serial, select the unused symbol
(vi+1, ti+1) where ti+1 is larger than ti . If the serial relationship between
(vi , ti ) and (vi+1, ti+1) satisfies both SEB and TDT time constraints, recur-
sively perform Forward phase for selecting (vi+2, ti+2). Otherwise, switch
to Backward phase for backtracking.

If the (i + 1)-th temporal relationship is parallel, select the unused symbol
(vi+1, ti+1) where ti+1 is equal or larger than ti . If ti = ti+1, recursively
perform Forward phase. Otherwise (i.e. ti �= ti+1), switch to Backward
phase for backtracking.

In the case of i + 1 = l, if (vi , ti ) and (vi+1, ti+1) satisfy the serial (or parallel)
relationship, one occurrence of pl is detected.

Backward phase: Suppose that two already selected symbols (vi , ti ) and (vi+1, ti+1)
do not satisfy the (i + 1)-th temporal relationship. So, we select (vi , t ′

i ) as an
alternative of (vi , ti ).

If the (i + 1)-th temporal relationship is serial, select the unused symbol
(vi , t ′

i ) where t ′
i is not only larger than the nearest SEB before ti+1, but

also larger than ti+1 − TDT.
If the (i + 1)-th temporal relationship is parallel, select the unused symbol

(vi , t ′
i ) where t ′

i is equal or larger than ti+1.

After modifying (vi , ti ) into (vi , t ′
i ), check whether (vi , t ′

i ) and (vi−1, ti−1) still
satisfy the i-th temporal relationship in pl . If so, switch to Forward phase in
order to select a new (vi+1, ti+1) for the modified (vi , t ′

i ). Otherwise, recursively
starts Backward phase for further backtracking. In the case of i = 1, where
(v1, t1) is modified into (v1, t ′

1), immediately switch to Forward phase.
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In both Forward and Backward phases, if no symbol can be selected, there is no
more occurrence of pl in S and our algorithm terminates. Finally, the number of pl’s
occurrences is defined as the frequency of pl , and denoted as f req(pl).

20.4.2.3 Using an Interestingness Measure

On the basis of the frequency of cpl freq(cpl), we determine whether cpl is ac-
tually a l-pattern pl . At this point, many interestingness measures have been pro-
posed to measure the usefulness of cpl [32]. In this chapter, we use the sup-
port and confidence of cpl as an interestingness measure f . Note that cpl =
(v1, nil), . . . , (vl−1, trl−1), (vl , trl) is generated by adding (vl , trl) to (l − 1)-pattern
pl−1 = (v1, nil), . . . , (vl−1, trl−1). This means that the first (l − 1) symbols in cpl

denoted by pre(cpl) = (v1, nil), . . . , (vl−1, trl−1) are already validated as pl−1.
Therefore, on the basis of the usefulness of connecting pre(cpl) and (vl , trl) measured
by f , we determine whether cpl can be pl or not.

We denote the support and confidence of cpl by sup(cpl) and con f (cpl), respec-
tively. They are defined as follows:

for cpl (l ≥ 1), sup(cpl) = f req(cpl),

for cpl (l ≥ 2), con f (cpl) = P(cpl | pre(cpl)).
(20.3)

In the above Equation (20.3), sup(cpl) is the frequency of cpl in S, and represents the
statistical significance of cpl in S. con f (cpl) is the conditional probability of cpl given
that pre(cpl) occurs, and represents the strength of the association between pre(cpl)
and (vl , trl). cpl is regarded as a l-pattern pl only when both sup(cpl) and conf(cpl)
are larger than the minimum support and confidence thresholds.

20.4.3 Parallel Algorithm

To reduce the computational cost of our mining algorithm, we present a parallel
algorithm for parallelizing the mining process. Our parallel algorithm assumes a
shared-nothing architecture where each of p processors has a private memory and a
private disk. These p processors are connected to a communication network and can
communicate only by passing messages. The communication primitives are prepared
by using MPI (Message Passing Interface) communication library [33].

The outline of our parallel algorithm is as follows: our parallel algorithm starts
with the extraction of 1-patterns by using a single processor. Suppose that the total
number of 1-patterns is k. These k 1-patterns are evenly distributed to p processors;
that is, k/p 1-patterns are distributed to each processor. Then, by using our mining
algorithm described in the previous section, each processor performs the extraction of
sequential patterns where distributed k/p 1-patterns are used as the starting symbols
of these sequential patterns. After all of p processors finish extracting sequential
patterns, all of extracted sequential patterns are gathered in one processor, and output
as the final mining result.

The above algorithm cannot be considered as an efficient parallel algorithm. The
reason is that when the number of sequential patterns extracted at one processor is
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fewer than those of the other processors, the processor has a long idle time in which
it waits for the other processors to finish their mining tasks. Thus, we need to reduce
such idle times on p processors used in our parallel algorithm.

Our parallel algorithm is improved by using a load balancing technique where
mining tasks of p processors are dynamically re-distributed. Specifically, when a
processor PEi has an idle time, PEi sends task requests to the other processors. If a
processor receives the task request from PEi , the processor reports the current progress
of its mining task to PEi . Thereby, PEi can select a donor processor that requires the
longest time to finish its mining task. After that, a part of the mining task of the donor
processor is re-distributed to PEi . Finally, PEi receives the re-distributed task from
the donor processor, and starts to run this task.

Suppose that a processor PE j ( j = 1, 2, . . . , p | j �= i) receives a task request from
PEi after extracting l j -patterns. In addition, the number of different starting symbols
in l j -patterns is m j , and the total number of sequential patterns extracted at PE j is
n j . After PEi receives l j , m j and n j from another processor PE j , PEi determines a
donor processor in the following way: first of all, PE j with m j = 1 cannot be a donor
processor because it has no distributable task. Among the remaining processors, PEi

selects PE j with the smallest l j as a donor processor. This is based on the assumption
that since l j represents the number of iterations which PE j has finished, the smaller
l j indicates a slower progress of PE j ’s mining task. Nonetheless, if some processors
have the same smallest l j , PE j with the largest n j is selected as a donor processor.
We assume that the more sequential patterns PE j extracts (i.e., the larger n j PE j has),
the more candidate patterns are generated. After determining a donor processor PE j ′

where l j ′ -patterns are classified into m j ′ groups of different starting symbols, PE j ′

sends (m j ′/2) groups to PEi . Afterward, PEi extracts sequential patterns whose first
l j ′ symbols are l j ′ -patterns in the groups sent from PE j ′ .

20.5 Experimental Results

We selected three movies, Star Wars Episode 2 (SWE2), Star Wars Episode 4 (SWE4)
and Men In Black (MIB). For our experiment, our video data mining approach was
tested on the six fragments with about 30 minutes in the above three movies. These
six fragments are listed below:

� video 1 is a fragment in SWE2 and contains 444 shots.
� video 2 is a fragment in SWE2 and contains 725 shots.
� video 3 is a fragment in SWE4 and contains 578 shots.
� video 4 is a fragment in SWE4 and contains 439 shots.
� video 5 is a fragment in MIB and contains 444 shots.
� video 6 is a fragment in MIB and contains 453 shots.

All of the above videos are compressed in MPEG-1 format with a frame rate of 29.97
frames/second. Shot boundaries are detected by using MP-Factory (MPEG Software
Development Kit) library [34]. Note that video 2 contains a larger number of shots
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Table 20.2. The performance evaluations of assigning categorical values of SM .

video 1 video 2 video 3 video 4 video 5 video 6

Precision (speech) 52.9 (%) 57.29 72.11 74.94 97.2 96.2

Precision (music) 37.53 82.67 49.72 50.0 21.5 29.5

Recall (speech) 72.34 31.14 41.28 64.6 49.6 25.4

Recall (music) 20.68 92.8 78.44 61.2 90.5 96.8

than the other videos because almost all semantic events are battle events presented
by fast transitions of shots with short durations.

20.5.1 Evaluations of Assigning Categorical Values of SM

For the experimental videos, we evaluate the performances of our method for assigning
categorical values of SM to shots. These performances are presented in Table 20.2.
The precision and recall of each video are computed by comparing our method with the
human observer. If a shot contains both speech and music, the lauder one is selected as
the ground truth for the shot. As shown in Table 20.2, none of the performances in the
experimental videos are good because these videos contain various kinds of sounds
(e.g., sound effects and sounds of machine engines) apart from speech and music.
In regard to these low performances, in order to extract reliable semantic patterns
from the experimental videos, we manually assign a categorical value of SM , such
as speech, music, others, or no-sound to each shot.

20.5.2 Evaluation of Semantic Event Boundary Detections

In order to detect semantic event boundaries in a video, we use the method introduced
in [5] that intelligently merges semantically related shots into a semantic event. In
this method, semantic event boundaries are dynamically updated on the basis of time-
adaptive shot grouping where the spatial and temporal information and temporal
localities are used. But, since temporal localities rely on the average of shot durations
in the whole video, the method in [5] does not work well when some segments
have significantly different averages of shot durations. For example, shot durations
are relatively long in one segment where romantic events are presented, while shot
durations are relatively short in another segment where thrilling events are presented.
The overall average of shot durations in these two segments is not suitable for capturing
temporal localities in any of two segments. So, the method in [5] should not be
applied to the whole video but be applied to segments separately. In each segment,
shot durations are almost similar, thus the average of these shot durations is suitable
for capturing temporal localities in the segment.

In order to divide a video into segments, we use the method introduced in [30].
It models shot durations in the video by using an infinite-state automaton, where
each state is associated with a probabilistic density function having an expected value
of shot duration. Furthermore, to make this modeling robust to many insignificant
changes of shot durations, costs are assigned to state transitions. As a result, the video



P1: OTE/SPH P2: OTE

SVNY295-Petrushin September 19, 2006 16:41

20. A Time-Constrained Sequential Pattern Mining 421

Table 20.3. The performance evaluations of our semantic event boundary

detection method.

video 1 video 2 video 3 video 4 video 5 video 6

# of segments 4 3 4 3 3 3

Precision 64.9 (%) 55.8 63.2 54.3 25.0 62.1

Recall 77.4 71.7 85.7 73.1 42.0 75.0

is divided into some segments, in each of which shot durations are modeled by a
single state in the infinite-state automaton. That is, shot durations in the segment are
relatively constant toward the expected value of the state. Finally, by applying the
method in [5] to each segment separately, the detection of semantic event boundaries
can be much more accurate than the detection by simply applying it to the whole
video.

Table 20.3 shows the performance evaluation of our semantic event boundary
detection method. The row of # of segments shows that each experimental video
is divided into three or four segments. The precision and recall in each video are
computed by comparing our method with the human observer. The reasonably high
recall values indicate that most of true semantic event boundaries are detected by our
method although the relatively low precision values indicate that our method over-
detects semantic event boundaries. The main reason is that the spatial and temporal
information in a shot cannot be successfully obtained only from the color information.
For example, semantically related shots where a character performs similar actions in
different background locations cannot belong to the same semantic event. Since we
cannot extract reliable semantic patterns by using erroneous semantic event bound-
aries detected by our method, we manually correct these semantic event boundaries.

20.5.3 Evaluations of Extracted Semantic Patterns

By using our time-constrained sequential pattern mining method, we extracted seman-
tic patterns from the experimental videos. Examples of extracted semantic patterns
are shown in Table 20.4, where the three columns from the left represent the proper-
ties of extracted semantic patterns and the rest of four columns represent the results
of retrieving semantic events by using these patterns. In the third column, a serial
relationship between two consecutive symbols X and Y is represented as X − Y and
a parallel relationship is represented as XY . Extracted semantic patterns can be clas-
sified into the following three groups. The first group is called action group, which
includes the semantic events where characters perform specific actions (i.e., talk,
move and violence). The second one is called situation group which includes the
specific situations (i.e., dark, close-up, and thrilling). The third one is called combi-
nation group including the semantic events where characters perform specific actions
in specific situations (i.e., talk in thrilling situation, talk in dark situation, and so on).

For each semantic pattern in Table 20.4, the precision (P) and recall (R) are
computed on the basis of semantic events retrieved by using the semantic pattern.
In addition, a video annotated with * means that the semantic pattern cannot be
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extracted from the video. In accordance with these notations, we briefly explain
extracted semantic patterns while evaluating the retrieval results of these patterns.

First of all, the semantic patterns associated with talk events SM1 − SM1,
SM1MV 0, and MV0 − MV0 are characterized by “two continuous shots with human
voice,” “a shot with human voice and no direction of movement,” and “two continu-
ous shots with no direction of movement” respectively. The considerably high recall
values for these patterns indicate that characters talk to each other and hardly move
in most of talk events. The semantic pattern associated with move event MV 4SM2
is characterized by “a shot with a constant movement direction and music.” This
pattern indicates that background music is frequently used when some vehicles or
characters move. The semantic patterns associated with violence events M S5SM2,
SM2 − SM2, and SL0 − SL0 are characterized by “a shot with a large amount of
movement and music,” “two continuous shots with music,” and “two continuous shots
with short durations” respectively. Especially, MS5SM2 and SM2 − SM2 reveal an
interesting nature of violence events, where background music is generally more
emphasized than character’s voice. But, we could not extract them from MIB where
background music is hardly used. So, SL0 − SL0 is only the semantic pattern for
characterizing violence events in MIB and this pattern is also applicable to SWE2 and
SWE4. Finally, all of the above semantic patterns in the action group consist of raw
level metadata for temporal aspects.

Apart from the action group, the situation group includes semantic patterns con-
sisting of raw level metadata for spatial aspects. The semantic pattern associated with
dark situation CV 2 is characterized by “a shot where brightnesses of most pixels
are of low value.” Although all recall values are 100(%), the low precision values of
video 3, video 4, and video 6 represent that semantic events retrieved by using CV 2
include many semantic events where black-costumed characters play important roles.
Examples of such black-costumed characters are Darth Vader in SWE4 and charac-
ters wearing black suits and sunglasses in MIB. Two semantic patterns associated
with character’s close-up L N1 and S A3 are characterized by “a shot containing few
straight lines” and “a shot containing a large skin colored region” respectively. L N1
is confirmed by the fact that a human face is generally rounded, so few straight lines
can be derived from its boundary. S A3 agrees with our intuition that S A reflects the
size of the main character in a keyframe. But, the low precision values in video 1 and
video 2 indicate that S A3 does not work well for videos where there are many skin
colored objects (e.g., rock and desert). The semantic pattern associated with thrilling
situation CS4 is characterized by “a shot where saturations of most pixels are of low
value.” This kind of shot generally displays a blurred situation where an explosion or
chase with high speed takes place. But, CS4 is not extracted from MIB because the
dominant color in most of shots is black.

For the semantic patterns in the combination group, CS4SM1, CV2SM2,
CV2 − CV2LN1SA4, SA3SM1MV0, LN1SM1MV0, LN2SM1MV0, CV2LN1SA3, and
CV 2L N1S A3SL0 are the combinations of the action and situation groups. For exam-
ple, LN1SM1MV0 is associated with talk events of character’s close-up. This pattern is
the combination of LN1 for character’s close-up and SM1MV 0 for talk events. Also,
CV2LN1SA3SL0, which is associated with violence events of dark and character’s
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close-up, is the combination of three types of semantic patterns CV 2 for dark sit-
uation, L N1 and S A3 for character’s close-up and SL0 for violence events. Like
this, the combination group specifies more complex semantic events than those of the
action and situation groups.

20.6 Conclusion and Future Works

Currently we are facing with the problem that transforming a raw material video into
a multistream of raw level metadata inevitably involves semantic noises. A semantic
noise means that the same categorical value of raw level metadata is assigned to
semantically different shots. For example, the same categorical value of S A can be
assigned to two types of shots, one is a shot where a character appears close to
the camera, the other is a shot where a skin colored background is shown. Such
semantic noises may prevent us from extracting some interesting semantic patterns.
With respect to this, we plan to develop a video data mining approach which extracts
semantic patterns without deriving raw level metadata from a raw material video.
To achieve this goal, a data squashing technique [35] seems to be useful because it
scales down a large original video data into a smaller pseudo data, while preserving
nearly the same structure to the original data. Since each pseudo data element has a
weight for reflecting the distribution of the original data, we must introduce a new
data mining technique that accepts weights to extract semantic patterns.
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21. Multiple-Sensor People Localization in an
Office Environment

Gang Wei, Valery A. Petrushin, and Anatole V. Gershman

Summary. This chapter describes an approach for people localization and tracking in an
office environment using a sensor network that consists of video cameras, infrared tag readers,
a fingerprint reader, and a PTZ camera. The approach is based on a Bayesian framework
that uses noisy, but redundant data from multiple sensor streams and incorporates it with the
contextual and domain knowledge that is provided by both the physical constraints imposed
by the local environment where the sensors are located and by the people who are involved in
the surveillance tasks. The experimental results are presented and discussed.

21.1 Introduction

The proliferation of a wide variety of sensors (video cameras, microphones, infrared
badges, RFID tags, etc.) in public places such as airports, train stations, streets, park-
ing lots, hospitals, governmental buildings, shopping malls, and homes has created
the infrastructure that allows the development of security and business applications.
Surveillance for threat detection, monitoring sensitive areas to detect unusual events,
tracking customers in retail stores, controlling and monitoring movements of assets,
and monitoring elderly and sick people at home are just some of the applications
that require the ability to automatically detect, recognize, and track people and other
objects by analyzing multiple streams of often unreliable and poorly synchronized
sensory data. A scalable and robust system built for this class of tasks should also be
able to integrate this sensory data with contextual information and domain knowledge
provided by both the humans and the physical environment to maintain a coherent and
logical picture of the world over time. While video surveillance has been in use for
decades, systems that can automatically detect and track people (or objects) in multi-
ple locations using multiple streams of heterogeneous and noisy sensory data is still a
great challenge and an active research area. Since the performance of these automatic
systems is not at the level at which they can work autonomously, there are human ex-
perts who are still part of the loop. It is important to develop techniques that can help
human experts in this task by organizing and presenting the video surveillance data in
a summarized manner, and highlighting unusual or rare events for further research by
the experts. Many approaches have been proposed for object tracking in recent years.

427
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They differ in various aspects such as number of cameras used, type of cameras and
their speed and resolution, type of environment (indoors or outdoors), area covered
(a room or a hall, a hallway, several connected rooms, a parking lot, a highway, etc.),
and location of cameras (with or without overlapping fields of view). Some of the
approaches are reviewed below. However, the performance of most systems is still
far from what is required for real-world applications.

The objective of our research is to bridge the gap between the needs of prac-
tical applications and the performance of current surveillance algorithms. We seek
solutions in the following directions:

� Developing a framework for logical integration of noisy sensory data from multiple
heterogeneous sensory sources that combines probabilistic and knowledge-based
approaches. The probabilistic part is used for object identification and tracking, and
the knowledge-based part is used for maintaining overall coherence of reasoning.

� Exploiting local semantics from the environment of each sensor. For example, if
a camera is pointed at a location where people usually tend to stand, the local
semantics enable the system to use the “standing people” statistical models, as
opposed to a camera pointing at an office space where people are usually sitting.

� Taking advantage of data and sensor redundancy to improve accuracy and robustness
while avoiding the combinatorial explosion.

� Taking advantage of human guidance when it is available.
� Developing approaches and tools for efficient event clustering, classification, and

visualization.
� Developing robust and scalable systems that work in real environments.

21.2 Environment

This research is a part of Multiple Sensor Indoor Surveillance (MSIS) project, which
pursues the above-mentioned objectives. The backbone of the MSIS environment con-
sists of 32 AXIS-2100 webcams, a pan-tilt-zoom (PTZ) camera, a fingerprint reader,
and an infrared badge ID system (91 readers that are installed on the ceiling) that
are sensing an office floor for Accenture Technology Labs in Chicago (Figure 21.1).
The webcams and infrared badge system cover two entrances, seven laboratories and
demonstration rooms, two meeting rooms, four major hallways, four open-space cube
areas, two discussion areas, and an elevator area. Some areas are covered by multiple
cameras, the maximum overlap being with up to four cameras. The total area covered
is about 18,000 ft2 (1,670 m2). The fingerprint reader is installed at the entrance and
used for matching an employee with his or her visual representation. The PTZ cam-
era is watching the main entrance and northwestern cube area, and is used for face
recognition.

Figure 21.2 presents the architecture of the system. It consists of three layers.
The bottom layer deals with real-time image acquisition and feature extraction. It
consists of several networked computers, with each computer running an agent that
receives signals from 3 to 4 webcams, detecting “events,” storing images for that



P1: OTE/SPH P2: OTE
SVNY295-Petrushin September 18, 2006 20:54

21. Multiple-Sensor People Localization in an Office Environment 429

Fig. 21.1. Locations of Web cameras and infrared badge readers. Here IR badge readers are
represented as dots, cameras are represented by small images that show their orientation, the
PTZ camera has the label “PTZ” on the image, and the fingerprint reader is represented by a
corresponding image near the main entrance.

event in the image repository in JPEG format, extracting features and saving them in
the database. The event is defined as any movement in the camera’s field of view. The
average signal sampling frequency is about 3 frames per second. Three more agents
acquire and save in the corresponding databases information about events detected
by the infrared badge ID system, and the results of fingerprint and face recognition.
The event databases serve as a common resource for applications of higher levels.

The middle layer consists of a set of application agents that use the features ex-
tracted at the bottom layer. The results of these agents go to the databases. Depending
on the objective of the application it may use one, several, or all cameras and some
other sensors.

The top layer consists of a set of meta-applications that use the results of the
middle layer applications, integrate them, derive behavioral patters of the objects, and



P1: OTE/SPH P2: OTE
SVNY295-Petrushin September 18, 2006 20:54

430 Gang Wei et al.

Meta
applications
- Activity sum-

mary, etc. 

Applications
Event clustering and 
visualization

 People localization
People counting, etc.  

Backbone
 Image acquisition
 Background modeling
 Feature extraction

Image
repository

Feature
database

Result
database

Meta
results

Fig. 21.2. General architecture of the Multiple Sensor Indoor surveillance system.

maintain the consistency of results. The applications of this layer are also responsible
for maintaining the databases of the system and creating reports on its performance.

The MSIS project has the following objectives.

� Create a realistic multisensor indoor surveillance environment.
� Create an around-the-clock working surveillance system that accumulates data in

a database for three consequent days and has a GUI for search and browsing.
� Use this surveillance system as a base for developing more advanced event analysis

algorithms, such as people recognition and tracking, using collaborating agents and
domain knowledge.

The following agents or applications have been considered.

� Creating a real-time image acquisition and feature extraction agent.
� Creating an event classification and clustering system.
� Search and browsing of the Event Repository database using a Web browser.
� Counting how many people are on the floor.
� Creating a people localization system that is based on evidence from multiple

sensors and domain knowledge.
� Creating a real-time people tracking system that gives an optimal view of a person

based on multiple cameras and prediction of person’s behavior.
� Creating a system that recognizes a person at a particular location and interacts

with him or her, for example, the system can send a voice message to the person
and get his or her response.

� Creating a system that recognizes the behavior patterns of people.
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� Creating a system that maintains the consistency of dynamic information about the
events that was collected or derived by the other agents.

The above-mentioned applications are currently at different stages of completeness
(see Chapter 5 in this book for a description of an application for event classification
and clustering). This chapter describes the people localization system that is based
on evidence from multiple sensors and domain knowledge.

21.3 Related Works

There are many papers devoted to video surveillance using single and multiple cam-
eras. They differ in many aspects such as indoor/outdoor surveillance, people or/and
vehicle tracking, using overlapping or nonoverlapping cameras, using mono or stereo,
color or grayscale cameras, etc. Below we shall focus on some research that deals
with indoor people identification and tracking.

A system described in work [1], which is a single camera system that was created
for tracking people in subway stations, used the luminance contrast in YUV color
space to separate people blobs from the background. The coordinates and geometric
features of the blobs are estimated and two-way matching matrices algorithm has
been used to track (overlapping) blobs.

In [2] one color static camera has been used to track people in indoor environment.
It used several interacting modules to increase tracking robustness. The modules are a
motion tracker that detects moving regions in each frame, a region tracker that tracks
selected regions over time, a head detector that detects heads in the tracked regions,
and an active shape tracker that uses models of people shape to detect and track them
over time. The interaction among modules allows them dynamically incorporating
and removing static objects into/from the background model, making prediction about
a person’s position and moving direction, and recovering after occlusions.

In the Microsoft’s EasyLiving project [3] two color stereo cameras have been
used for real-time identification and tracking up to three people in a rather small
room (5 m by 5 m). The system evaluates 3D models of blobs and clusters them to
fit a people-shaped blob model. Then the centroids of the blobs are projected into the
room ground plan. The quantized RGB color histogram and histogram intersection
are used for person’s identity maintenance. A histogram is estimated for each person
viewed by each camera in each visited cell of 10 × 10 grid of the floor plan. The
person tracker module keeps the history of the person’s past locations and uses it to
predict current location. If the predicted location contains several candidates, then
color histograms are used to disambiguate them. If no candidates found the system
keeps unsupported person tracks active until new data arrive. For supported track
their histories are updated and new predictions are calculated. In spite of low image
processing rate (about 3.5 Hz) the system works well with up to three people, who
are not moving too fast and not wearing similarly colored outfits.

The M2Tracker system [4] uses from 4 to 16 synchronized cameras to track up
to six people walking in a restricted area (3.5 m by 3.5 m). The system identifies
people using the following models for segmenting images in each camera view: color
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models at different heights, presence probabilities along the horizontal direction at
different heights, and ground plane positions tracked using a Kalman filter. Then the
results of one camera segmentation are matched for pairs of cameras to estimate 3D
models for each person and estimate the object location on the ground plane using
Gaussian kernels to create location likelihood map. The system merges results from
several pairs of cameras until the ground plane positions are stable. Then the current
positions of people are updated, and new predictions are calculated. Because of high
computational complexity, the system cannot work in real time, but the authors hope
that code optimization efforts and advances in computing will make it possible in the
future.

The system presented in [5] uses several nonoverlapping cameras and knowledge
about topology of paths between cameras. It probabilistically models the chain of
observation intervals for each tracked person using Bayesian formalization of the
problem. To estimate the optimal chain of observation, the authors transform the
maximum a posteriori estimation problem into a linear program optimization.

The approach proposed in [6, 7] uses multiple synchronized grayscale overlap-
ping cameras for tracking people and selecting a camera that gives the best view.
The system consists of three modules: single view tracking, multiple view transition
tracking, and automatic camera switching. The system uses the following features
for each person: locations of selected feature points, intensity of the selected feature
points, and geometric information related to a coarse 2D human body model. The
multivariate Gaussian models and Mahalonobis distances are used for people model-
ing and tracking. The class-conditional distribution for spatial and spatial–temporal
matching is used for the multiple view transition tracking for matching predicted
location and body model size. The automatic camera switching is necessary if the
person is moving out of the current camera’s field of view, or the person moves too
far away, or the person is occluded by another person. The system selects a camera
that will contain the person over the largest time accordingly the current prediction
of the person’s movement. The experiments with three cameras in various indoor
environments showed high robustness of people tracking (96–98%).

The KNIGHTM system [8, 9] is a surveillance system that uses several over-
lapping and/or nonoverlapping uncalibrated color cameras for people tracking. The
system uses spatial and color Gaussian probability distributions for each person to
identify and track people in one camera view. The person identification is based on
voting of foreground pixels. If two or more people receive essential percentage of
votes from the same region, then the systems assume that partial occlusion of people
happens. In case of complete occlusion a linear velocity predictor is used for disam-
biguation. To track people across multiple cameras, the system during the training
period learns the field of view lines of each camera as viewed in the other cameras.
This information and knowledge of cameras’ location are used for identification of
moving people. The experiments with three cameras and three different camera setups
gave promising results.

The authors of the paper [10] suggest system architecture and scenarios of mul-
tiple camera systems that take advantage of recent achievements in video camera
technology, such as omnidirectional and PTZ cameras. Using the combination of
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such cameras allows creating an intelligent surveillance system that can automati-
cally select an optimal camera view to track and recognize people and their behavior.

21.4 Feature Extraction

In this section we describe camera specification and our approach to extracting visual
features that are used by all applications.

21.4.1 Camera Specification

We shall consider using for the surveillance task multiple static cameras with low
frame sampling rate (3–5 Hz) which is typical for Web cameras. The advantages of
indoor environments comparing to the outdoor ones are the following: there are no
sharp shadows, illumination changes rather slow, speed of the objects is low, because
the objects of interest are people. Besides, we can use our knowledge for specifying
important areas (e.g., working places in cubicles) and unimportant areas (such as
reflecting surfaces) in a camera’s view. The disadvantages are that many places in
an indoor environment are unobservable; people can easily change the direction of
movement and the people can be often occluded by furniture or the other people.

Each camera has a specification that includes the following data.

–Operating zone is an area that is used for feature extraction. For some cameras,
only part of their view area is worth to use. Having smaller operating zone
expedites processing.

–Background modeling type sets the type of background modeling for the cam-
era. The following background models are currently supported: single frame
and median filtering. More information on background modeling can be found
below.

– Indicators are some small areas and associated with them recognizers that
allow detecting some local events such as light in an office is on/off, a door
is open/closed, etc. The indicators play a double role—they can be used to
improve the background modeling, and they are additional pieces of evidence
about the state of the environment.

– Important areas are areas that the surveillance system pays special attentions,
such as doorways, working places in cubicles, armchairs in a hall, etc.

–Unimportant areas are areas that must be ignored because they are sources
of noise. Such areas are reflective surfaces, TV screens, computer monitors,
etc.

–Camera calibration data is location of markers that allow estimating distances
to objects in cameras’ views. This data is used for estimating objects’ location,
their geometrical features and speed.

Figure 21.3 gives an example of camera specification. Here there are two indicators
that detect such events as lights are on/off (in a meeting room on the left) and the
door to the meeting room is open/closed. Areas of indicators are represented as black
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Fig. 21.3. Camera specification.

and white solid rectangles. The light indicator uses average intensity and a threshold
as a recognizer, and the door indicator checks for a horizontal edge as a recognition
that the door is open. Three black dotted rectangles on the left represent important
areas—the working places in cubicles. Three white dashed rectangles on the right
mark unimportant areas, which are surfaces that get shadow when a person is passing
by. White markers on the floor are used for camera calibration. Five white dash-dotted
rectangles split the walkway into zones. Ranges of eligible values for objects’ height
and width are associated with each zone and are used for blob extraction. A tool with
a GUI has been designed to facilitate camera specification.

21.4.2 Background Modeling

The objective of background modeling techniques is to estimate value of pixels of
the background frame, that is, the frame without any moving objects. Then this frame
is subtracted pixel by pixel from a current frame to detect the pixels that belong to
moving objects (foreground pixels). Many approaches for background modeling have
been developed [11, 12].

The simplest approach is to use a single frame that is acquired when no motion
or changes within a sequence of frames are detected. The single frame method works
well when a camera watches a scene that has periods of time without moving objects,
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for example, for a camera that is watching a hallway. To take into account the change
of luminosity over time, the system has to periodically update the single frame model.
The advantage of the single frame method is that it does not require any resources
for maintaining the model. The disadvantage is that it does not work for scenes with
intensive motion.

Another approach is to accumulate and maintain a pool of N frames, where N
is an odd number. The value of each pixel of the background model is estimated as
medians of the corresponding pixels of frames from the pool. This model is called the
median filter background model. An alternative approach is to use mean instead of
median; however, such model is sensitive to outliers and requires the large pool size
N to be stable. The median filter model works well when each pixel of the scene is
covered by moving objects less than 50% of time. The advantage of the median filter
model is that it can be used for scenes with high motion, for example, for a camera
that is watching cubicles. The disadvantage is that it requires additional memory for
storing pool of frames and computations for maintaining the model [11].

The above models assume that each background pixel has only one value, but
sometimes it is not true, for example, when a camera watches a bush or a branch
of a tree that is shaken by wind; or a billboard that shows sequentially two adver-
tisements. To model such backgrounds more advanced techniques are required. One
of the approaches is to use Gaussian mixture models (GMM). In this approach each
background pixel is modeled as a mixture of 3–5 Gaussians. Each Gaussian has a
weight that is proportional to the frequency of pixels to have the value represented
by the Gaussian. It is assumed that Gaussians that represent background values have
higher weights and the sum of their weights reaches 0.6–0.8. Instead of subtracting
background image from the current frame, each pixel of the current frame is checked
for belonging to the background Gaussians if the probability is high it is marked
as background, otherwise as foreground. Creating GMM for each background pixel
requires intensive training, and changes in luminosity require dynamic adaptation
of models. The advantage of the background modeling using GMM is that it works
for periodically or stochastically changing environments. The disadvantages are that
its success depends on training and parameter tuning, and it has high computational
complexity and memory requirements [13, 14].

Real-time processing puts additional restrictions on background modeling. The
real-time system cannot wait to accumulate training data, train the models, and then
catch up by processing all postponed frames. It does not have enough processing
power to implement such scenario. That is why we adopted an approach that uses
two background modeling techniques and switches between them when it is needed.
The system loops through the basic cycle that consists of the following steps: image
acquisition, motion detection, if motion is not detected then the system is idle till the
next cycle otherwise it processes the image, which includes extracting foreground
pixels, extracting and storing features, and maintaining the background model. A
sequence of cycles that have motion forms a dynamic event. The dynamic events are
separated by events with no motion or static events.

If the camera uses the single frame model then the system starts by acquiring
a single frame background during a static event and updates it not less than in T
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Table 21.1. Using the single frame and adaptive models for real-time processing.

Local change Global change
Model type Initialization Flicker of illumination of illumination
Single frame (SF) Start a new SF

Skip frame

Patch the effected area Start a new SF
Adaptive Start a new SF Generate a SF from AM Start a new SF

model (AM) Patch the effected area
Accumulate data Accumulate data Accumulate data

Generate and Generate and Generate and
switch to AM switch to AM switch to AM

seconds by picking up a frame from a static event that lasts not less than D seconds.
The parameters T and D can be specified for each camera (the default values are
T = 120 and D = 60). There are three kinds of events that require attention for
robust background modeling. The first one is a flicker that is a short abrupt change
in illumination due to camera noise. The second kind of events is a local luminosity
change; for example, lights get on or off in an office, which is a part of the scene. And
the third kind of events is global luminosity change when more then 60% of pixels
are changed; for example, when lights get on/off in the room, which is observed by
the camera. The system reacts differently for each kind of events. When a flicker
occurs, the system skips the frame. When a local luminosity change occurs, the
system recognizes this case, using an indicator and patches the effected area with
values extracted from the new frame. If the system uses an adaptive background
model it first generates a single frame model and then patches the effected area. In
case of global change the system acquires a new single frame. If the camera uses an
adaptive background model, then the system acquires a single frame model and start
accumulate data for creating a new adaptive model. It picks up frames from static
events using parameters T and D. When the desired number of frames is reached the
systems generates and switches to the adaptive model and begins to maintain it. Table
21.1 summarizes the system’s behavior in different modes.

As an adaptive model we used the median filter model with a pool of size N = 51.
Maintaining the model requires discarding the oldest frame, adding a new one and
sorting the values for each pixel. The system using a version of a dynamic deletion–
insertion algorithm to avoid sorting and improve the speed of model maintenance.

For dynamic events the background model is subtracted from current frame for
detecting foreground pixels. Then some morphological operations are applied to re-
move noise and shadows. After this, the foreground pixels are separated into blobs
using the calibration information for each camera. Finally a set of candidate blobs is
selected for feature extraction.

21.4.3 Visual Feature Extraction

A person’s most distinguishable visual identity is his or her face. However, in many
practical applications the size and image quality of the face do not allow traditional
face recognition algorithms to work reliably, and sometimes the human face is not
visible at all. Therefore, our people localization system uses face recognition as an
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auxiliary means that is applied for only some areas of some cameras. The other
salient characteristic of a person are sizes of the body, color of the hair, and color of
the clothes that is on the person. At any given day, a person usually wears the same
clothes, and thus the color of person’s clothes is consistent and good discriminator
(unless everybody wears a uniform). We use color histograms in different color spaces
as major features for distinguishing people on the basis of their clothes.

The blob is processing in the following manner. The top 15% of the blob, which
represents the head, and bottom 20%, which represents the feet and also often includes
shadow, are discarded and the rest of the region is used for feature extraction. We
used the color histograms in RGB, normalized RGB (see Equations (21.1)–(21.2)),
and HSV color spaces with the number of bins 8, 16, and 32.

r = R

R + G + B
, g = G

R + G + B
, b = B

R + G + B
(21.1)

l = R + G + B

3
(21.2)

where r, g, and b are red, green, blue components, and l is the luminance in the
normalized RGB space, and R, G, and B are red, green, and blue components in the
RGB space.

After some experiments we chose the 8-bin color histogram in the normalized
RGB space for the r, g, and l components, which gave a good balance between
computation efficiency and accuracy.

21.4.4 People Modeling

For modeling a person on the basis of his or her appearance, we use several approaches.
The simplest one is to use all pixels of the blob for training a color histogram. Another
approach is to fit a Gaussian or a Gaussian Mixture Model to the training data. A
more elaborate person modeling includes two models—one for top and another for
the bottom part of the body.

Let us assume that we built a model MH for a human H . To estimate how well
the data D extracted from a new blob R fits the model, we can consider the model
as a probability density function and estimate the likelihood of the data set using
Equation (21.3), which assumes that pixels’ values are independent. The data set D
can include all pixels of the blob or a randomly selected subset of particular length
(usually 50–100 pixels are enough for reliable classification). In case when two (top
and bottom) models are used for modeling, Equation (21.3) should be extended to
include products of likelihoods for each model over corresponding data points. In
practice, a log-likelihood function is used instead of likelihood one.

L(D | MH ) =
N∏

i=1

p(xi | MH ) (21.3)

where xi ∈ D are points of the data set D, p(· | MH ) is the probability distribution
function for the model MH , N is the number of points in the data set D.
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The type of probability distribution function depends on the type of the model
used. For example, in case of color histogram it can be approximated as a product of
corresponding values for pixel’s components. Below we shall use H instead of MH

if it does not cause any confusion.

21.5 People Localization

This section presents a Bayesian framework for people localization that allows the
integration of evidence of multiple sensor sources. Our task is to localize and track
N objects in a space of known geometry with stationary sensors of different kinds.
The number of objects may change dynamically over time when an object arrives
or leaves. The sensing zones for some sensors can overlap. We assume that there
are two types of objects: known objects (employees) and unknown objects (guests or
customers). The space is divided into “locations.” Time is sampled into ticks. The tick
duration is selected depending on the sampling frequencies of the sensors. It should
be large enough to serve as a synchronization unit and small enough so that objects
can either stay in the same location or move only to an adjacent one within a tick.

21.5.1 Sensor Streams

Each object is represented by a set of features extracted from sensor streams. We are
currently using four sources of evidence.

21.5.1.1 Video Cameras

This is very rich data source, but requires a lot of sophisticated processing to ex-
tract useful information. Processing this source requires solving problems such as
background modeling, object tracking, occlusion resolution, and object recognition.
Our system is mostly based on this source. We are using two approaches for people
localization—people appearance modeling and face recognition. People appearance
modeling is based on color features. An object can have several color models—one or
more for each location or even for the time of the day. Object models can be defined
(through training) prior to the surveillance task or accumulated incrementally during
the task. Appearance modeling works for all cameras, whereas face recognition is
efficient only for some cameras where size and orientation of faces are appropriate.
We use a dedicated PTZ camera that watches the main entrance to the floor for face
recognition. The face recognition system uses the OpenCV algorithm [15] and tries
to recognize people from a restricted list.

21.5.1.2 Infrared Badge ID System

The second source of evidence is the infrared (IR) badge system. The system collects
data from 91 readers and merges them into a database that indicates where a particular
badge was sensed the last time. This source of information is not very reliable because
of the following reasons.
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1. The badge has to be in the line of sight of a reader on the ceiling. If a person puts
his or her badge into a pocket, it cannot be detected.

2. The orientation of the badge affects the detection. A person may be standing under
an IR-reader but his badge could trigger another reader nearby depending on the
orientation of the badge.

3. A person can leave his or her badge in the office or give it to another person.
4. Detection records are written to the database with a delay creating a discrepancy

among different sources of evidence for fast moving objects.

Before processing IR badge sensor signals, the system must determine and maintain
the list of active sensors, which are sensors that both transmit signals and move in
space.

21.5.1.3 Finger Print Reader

The third source of evidence is the fingerprint reader. This is a very reliable source,
but located only at the main entrance, has a restricted number of registered users, and
a person only uses it 1–2 times per day for check-in. We mostly use it for acquisition
or updating of person appearance models as a person checks-in when entering the
office.

21.5.1.4 Human Intervention

The fourth source of evidence is human intervention. People who participate in a
surveillance task can interactively influence the system. They can mark an object in a
camera view and associate it with a particular person, which causes the system to set
the probability of the person being at this location to 1 and recalculate the previous
decisions by tracking the person back in time. This is a very reliable, but costly
information source. We use it mostly for initializing and updating person appearance
models.

21.5.2 Identification and Tracking of Objects

The current state of the world is specified by a probability distribution of objects
being at particular locations at each time tick. Let us assume that P(Hi | L j ), i =
1, N , j = 1, K are probabilities to find the object Hi at location L j . The initial (prior)
distribution can be learned from data or assumed to be uniform. Each object has a set
of models that are location and sensor specific.

21.5.2.1 One Sensor, One Location

Suppose we have only one sensor (camera or IR badge reader). It senses one location,
captures events, and saves them in the event database. For the camera, an event is a
time-ordered sequence of frames with motion. For an IR reader, an event is a sequence
of sets of people IDs detected at this location. Taking into account that the IR badge
system gives the list of people IDs directly, we concentrate first on processing data
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from a camera, and then consider how to merge the decisions from both sensors when
they are available.

The task is to identify people whom the camera sees. We assume that we have
models for each of N people. We also assume that we have prior probabilities
P(Hi ) i = 1, N for the person i being in front of the camera. The prior probabil-
ities can be estimated from data or assumed to be equal if no data are available.

The processing agent performs the following algorithm for each event.

Step 1. For the current frame extract regions that correspond to people (objects). The
result is a set of regions (blobs) R = {R j } j = 1, M .

Step 2. For each region R j do the following.
2.1 Estimate likelihoods P(R j | Hi ) i = 1, N of the region to belong to the model

of person Hi .
2.2 If all likelihoods are below a threshold Th, then the blob represents an unknown

person. In case when the system tracks all people, it creates a new ID and a
model for this person, otherwise it marks the blob as “unknown.”

2.3 If one or more likelihood is above the threshold, calculate posterior probabilities
using Bayes formula,

P
(
Hi | R j

) = P
(
R j | Hi

) · P (Hi )

P
(
R j

) (21.4)

where P
(
R j

) = ∑N
i=1 P

(
R j | Hi

) · P (Hi ) is the complete probability of the
region R j .

2.4 Assign to the blob a person that maximizes the posterior probability. Exclude
this person from the list for the other regions (a person cannot be represented by
more than one blob). Pick up another blob, go to Step 2.1.

Step 3. Do steps 1–2 for each frame of the event. There are several ways of how
to process the next frame. One of them is to use the same initial prior probability
distribution for each frame. In this case we consider each frame independently (a
“bag” of frames approach), and the final result does not depend on the sequence of
frames. This approach can be more robust when occlusions occur. If an occlusion
happens, the system just loses a blob for the current frame. But this gap can be
restored at the postprocessing step using median filtering on the probability se-
quence for the occluded person. Another approach is using current probabilities
as the prior probabilities. In this case the frames are processing consequently in
forward or backward direction. This approach requires some heuristics in case of
occlusions, such as keeping the probability for disappeared blob unchanged.

Step 4. Do postprocessing. It includes applying smoothing procedures, such as median
filtering of the probability sequences of detected people and summarizing result
for the whole event.

When merging evidence from camera and IR badge sensors, the system takes
into account the peculiarities of IR badge sensor mentioned above. First, it shifts
data to compensate for 3-s delay of the IR badge signal. Second, it uses signals only
from active sensors. Third, in spite of binary evidence the system uses a likelihood
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function that gives the probability of 0.95 for the people on the evidence list and low
probability for all other people (see below for more elaborated likelihood function for
multisensor and multilocation case), which is used in Equation (21.4). If no evidence
came in the next tick, the likelihood function degrades exponentially.

21.5.2.2 Multiple Sensors and Multiple Locations

In this case we have to deal with new challenges such as synchronization of multiple
sensors in time and space.

On one hand, some sensors such as video cameras can have large fields of view
that can be divided into nonoverlapping locations. On the other hand, the sensing
zones of different sensors can intersect. These intersections can be considered as
natural locations. Sometimes the borders of locations are fuzzy.

The concept of location allows making more precise localization, and having
person models for each location to improve person identification. On the other hand,
we have to create person models for each person and for each location that often is
not possible because the person cannot visit all locations during the day. That is why
we assume that a person may have models only for some locations. If a person does
not have a model for the location under consideration, then the model for the closest
location is used.

Each person also has a transition matrix T (Hk) = {ti j (Hk)}k = 1, N , i, j = 1, K ,
that specifies the probability of person transition from i-th to j-th location.

The major concern for a multisensor environment is accuracy of data synchroniza-
tion. Different sensors may have different sampling rates and can acquire signals in
nonregular intervals. In general, surveillance cameras are not synchronized. However,
computers’ clocks can be synchronized and time stamps can be assigned to frames.
This means that we cannot synchronize frames, but we can select frames that belong
to time interval of some duration (time tick). The time tick should be big enough to
contain at least one frame from each camera, but be small enough to allow people
moving only inside the current location or to the one of adjacent locations. In our
experiments time tick is equal to 1 s.

Another issue is that sensors of the same or different type can have overlapping
sensing zones. It poses some restrictions on locations form and size. For example,
Figure 21.4 shows two cameras with overlapping field of views. The area has six
locations. Locations around the overlap (L2, L3, L4) have more sophisticated geom-
etry. The graph on the right represents transitions among locations. (Here locations
H L1–H L3 correspond to hidden areas.)

The process of identification and tracking of objects consists of the following
steps.

Step 1. Data Collection and Feature Extraction: Collect data from all sensors
related to the same time tick. Select data that contain information about a new
“event” and extract features.

Step 2. Object Unification From Multiple Sensors: Each sensor detects signals of
one or more objects in its sensory field. The signals that come from the same object
are merged on the basis of their location and sensory attributes. This gives us a
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Fig. 21.4. Observed and hidden locations for two cameras.

unified model of how different sensors “see” the same entity. For video cameras,
the blobs are first mapped into locations based on their coordinates and calibration
data from the cameras. Then the blobs from different cameras that belong to the
same location are assigned to the same entity based on their color features. For
IR badge data, which consist of binary indicators of a badge being detected at
a particular location, the system first spreads the probability to the adjacent IR
locations taking into account the space geometry, and then maps IR locations into
camera-based locations and associates evidence with entities. The result is a set of
entities O = {Or } and a matrix W = {wkr }k = 1, K , r = 1, M0, where M0 is the
number of entities. Each wkr is the membership value of r -th entity to belong to
the k-th location.

Step 3. Motion Estimation: The locations are selected in a way that an object can
either stay in the same location or move to an adjacent location during any single
time tick. The specific transition probabilities among locations for a known object
or generalized transition probabilities for the other objects are estimated from
historical data or provided as prior knowledge by the people involved in the task.
These probabilities are taken into account for re-estimating prior probabilities using
Equation (21.5).

P̃(Hi | L j ) =

[
L∑

k=1
P(Hi | Lk) · tk j (Hi )

]
· P(Hi | L j )

L∑
l=1

[
L∑

k=1
P(Hi | Lk) · tk j (Hi )

]
· P(Hi | Ll)

(21.5)

This is a kind of motion prediction in case when we do not know anything about the
person’s movement except that he or she was previously in a particular location.
Adding more information to a person’s state, such as direction of movement,
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velocity, acceleration, etc., makes possible applying more advanced tracking tech-
niques, such as Kalman filtering [16], particle filtering [17], or Bayesian filtering
[18].

Step 4. Posterior Probability Estimation: Using the features that belong to the same
entity and the person models, the conditional probability that the entity represents
a person at a given location is estimated for all entities, objects, and locations. The
result is a sequence of probabilities Sr = {P(R j , Lk, Cq | Hi, )} associated with
the entity Or .r = 1, M0. Here R j , j = 1, Mr are the feature data extracted from
representations of entity Or , and Cq , q = 1, Q, are sensors. For video cameras,
the probabilities that a blob represents an object (person) for given cameras and
locations are calculated using blob’s features and persons’ models (see Equation
(21.3)). For IR badge data the probabilities distributed to adjacent locations are
used as the conditional probabilities. The output of face recognition system is also
used as conditional probabilities. The fingerprint and human intervention evidence
sets up the prior probabilities directly. The difference between video sensors and
the other sensors is that the data from video cameras are used for every tick, but
the data from the other sensors are used only when they are available.

For each entity the estimates of likelihood that the entity represents a particular
person at a given location are calculated. If all estimates are less than a thresh-
old, then the entity is marked as “unknown,” and a new ID and a new model are
generated. Otherwise, the conditional probabilities of signals that are views of the
same entity from different sensors are used for estimating posterior probabilities
of a person being represented by the entity at the location using Bayes rule (21.6)
and the person’s ID that maximizes the conditional probability is assigned to the
entity. Then the model of the just assigned person is excluded from the model list
for processing the other entities.

P (Hi | Or , Lk) =
P̃ (Hi | Lk) · wkr · ∏

P(R j ,Lk ,Cq ) ∈Sr

P
(
R j , Lk, Cq | Hi

)

P (Or )
(21.6)

where P (Or ) =
N∑

i=1
P̃ (Hi | Lk) · wkr · ∏

P(R j ,Lk ,Cq ) ∈Sr

P
(
R j , Lk, Cq | Hi

)
.

Then the probabilities for the entity are normalized over locations using (21.7).

P(Hi | Lk) = P(Hi | Or , Lk)
L∑

k=1
P(Hi | Or , Lk)

(21.7)

Step 5. Reestimation: Steps 1–4 are repeated for each time tick.
Step 6. Postprocessing: This step includes some smoothing procedures for whole

events and truth maintenance procedures, which use problem domain knowledge
to maintain probabilities when no data are available. In case when an object is
temporarily invisible, the truth maintenance procedures mark it as “idle” and keep
its probability high to be in “hidden” locations that are near the location where the
object has been identified last time. For example, Figure 21.4 shows two cameras
that watch a room. There are five observed locations (L1–L5) and three hidden
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locations (HL1–HL3). The graph on the right shows transitions among locations. If
an object has been seen last time at location L2 then there is high probability for
the object to be in the location HL1, but if no additional evidence is available the
probabilities to be in locations HL2 and HL3 are also growing over time until all
three became equal.

The classical Bayesian approach assumes that (1) there are a constant number
of mutually exclusive hypotheses, and (2) the hypotheses cover the whole decision
space. In our case the situation is more dynamic—people may enter and leave the
floor, and people may be “invisible” to the sensors, for example, a person has his IR
badge covered and is standing in a “dead zone,” which is not observed by any camera.
We extended the framework to cover these problems. The system uses two cameras
that watch the elevator area and detects people who are entering or leaving the floor.
If a person leaves the floor, his or her model are marked as “inactive.” If a person
enters the floor, a new object and its appearance model are created and are marked as
“new.” The system tracks a new object and creates models for it for other locations
when it is possible (high probability of identifying the person, no occlusion, etc.).
The process continues until enough data is collected.

21.6 Experimental Results

For evaluation we used 15 cameras and 44 IR badge readers that are located in the
northern half of the floor. In the first experiment we evaluated the system’s perfor-
mance in the closed set case. It means that the system had models for all 15 people,
who participated in the experiment. The second experiment was designed for evaluat-
ing the system’s performance for the open set problem. Besides 15 “known” people it
included 10 “unknown” people, that is, people whose models were not available at the
beginning and created during the process. Each experiment lasted for 4 h from 10 am

till 2 pm. In both experiments two evaluations have been done. The first evaluation
estimated the accuracy of people localization for each camera separately, and then
calculated the average for each person. The second evaluation merged the results from
all cameras and IR badge readers. It is worth to mention that only 7 of 15 “known”
people (marked by stars in the Table 21.2) and none of “unknown” had active IR
badges. The results have been compared to the ground truth data created manually
for each tick.

Table 21.2 presents results for both experiments. From the table and Figure 21.5
we can see that in case of closed set problem the average recognition accuracy is
about 11% higher than for the open set problem for both single camera and integrated
evaluations. For the closed set problem the accuracy of localization for individual
person is in range from 44% to 99%. The low accuracy for some people can be
explained by the following:

� Poor blob extraction for people who are sitting still for a long time.
� Poor blob extraction when a person is (partially) occluded (e.g., a person was sitting

in his office partially visible through the door).
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Table 21.2. Accuracy of people localization for open and closed set problems.

PersonID

Closed set accuracy Open set accuracy

Single Cameras and Single Cameras and
Camera IR badge Diffe-rence Camera IR badge Difference

1000 82.14% 87.56% 5.42% 71.39% 77.31% 5.92%
1002 99.27% 99.51% 0.24% 94.54% 95.81% 1.27%

*1003 86.88% 91.07% 4.19% 81.91% 86.10% 4.19%
1005 74.32% 81.69% 7.37% 62.73% 70.59% 7.86%

*1006 45.98% 69.68% 23.70% 43.78% 58.58% 14.80%
*1015 44.08% 41.12% −2.96% 26.32% 26.58% 0.26%
1020 67.03% 76.71% 9.68% 60.75% 69.24% 8.49%

*1023 64.43% 60.77% −3.66% 59.82% 58.49% −1.33%
1024 41.26% 50.72% 9.46% 25.08% 32.78% 7.70%

*1025 69.26% 78.29% 9.03% 57.88% 66.81% 8.93%
1026 71.06% 73.66% 2.60% 41.34% 46.19% 4.85%

*1027 62.04% 73.41% 11.37% 58.13% 67.08% 8.95%
*1029 51.21% 57.88% 6.67% 51.50% 57.21% 5.71%

1064 77.81% 83.42% 5.61% 44.69% 51.69% 7.00%
1072 66.07% 74.49% 8.42% 52.53% 59.67% 7.14%

Average 66.86% 73.33% 6.47% 55.49% 61.61% 6.12%

� Poor blob separation in the hallways.
� Several people have similar models.

Merging evidence from several cameras and IR sensors improves the performance
for both cases for about 6%. For the closed set problem the largest improvement
(23.7%) was mostly due to IR badge data. In this case, a person ID1006 stayed in the
same location for a long time with his badge active. But sometimes merging IR badge

Fig. 21.5. Average accuracy of people localization.
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data causes a decrease of localization accuracy. It happens for transient events in the
hallways because of poor alignment of visual and IR data (see results for ID1015 and
ID1023). The increase from merging visual evidence from several cameras can reach
up to 9%.

For the open set problem the localization accuracy for individual person lies in
the range from 25% to 94%. Low accuracy for some people can be mostly attributed
(besides the above-mentioned reasons) to confusion with people who have similar
models. Merging additional evidence can improve performance up to 15%. Merging
only visual evidence from several cameras improves performance by 7–8%.

21.7 Summary

In this chapter we described a Bayesian framework that enables us to robustly reason
from data collected from a network of various kinds of sensors. In most practical
situations, sensors are producing streams of redundant, but noisy data. We proved
experimentally that the probabilistic framework presented here gives us the ability to
reason from this data by also incorporating the local semantics of the sensors as well
as any domain knowledge that can be provided by people involved in these tasks. We
believe that this framework is applicable in the larger context of creating robust and
scalable systems that can reason and make inferences from different kinds of sensors
that are present in the world today.

As to future work, we see that the system could be improved on many levels.
On the low level it needs more robust background modeling, blob extraction and
blob separation techniques, search for better features, and reliable dynamic modeling
of people and other objects’ appearance. On the middle level it needs using more
advanced tracking approaches such as nonlinear filtering [17, 18] and sensorial data
fusion approaches [19]. On the high level the system needs more efficient decision
merging approach, which can use domain-specific knowledge and can produce a
consistent “big picture” of events in the area under surveillance. We also plan to
spend time for developing more attractive visualization techniques and a useable user
interface.
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22. Multimedia Data Mining Framework
for Banner Images

Qin Ding and Charles Daniel

Summary. Because of the increasing volume of image data available, it is of importance to

develop new applications and techniques to perform multimedia data mining on images. This

chapter presents a framework for a novel data mining application on a special type of images,

that is, banner images. A banner image is an image file that is displayed on a Web site and

used for an advertisement of some product. A banner image is designed in such a way so that

it will attract Web users into clicking this image and possibly further completing the sale of

the advertised product. By analyzing the relationship between the click-thru rates, measured

by the ratio of user clicks and views, and the features of banner images, can help improve the

effectiveness of those systems using banner images. In this chapter, we propose a framework

called Bayesian Banner Profiler in which we apply Bayesian classification to predict the click-

thru rates based on a set of attributes extracted from the banner images. Experimental results

show that the proposed framework is promising for data mining on banner images.

22.1 Introduction

In the fast-paced world of Internet Web Advertising, the look and feel of an adver-
tisement can make or break the run of an advertising campaign. Web Advertisements
can take on many forms, one of which is the banner image. A banner image in its
simplest form is an image file displayed on a Web site and used for an advertisement
of some product to attract Web users into clicking this image. Once a Web user clicks
the image, he or she is transported to the advertiser’s Web page (also called “the
Landing Page”) in order to collect the users’ information and to complete the sale of
the advertised product. The point of entry (or initial advertisement placement) is usu-
ally on a Web site owned by an individual or a company (called “a Web Publisher”)
with no particular relationship to the advertiser of the product they are helping to
advertise. There can be many different points of entry (Web sites) for the placement
of the banner image but they all eventually lead to an advertiser’s landing page. The
advertiser’s landing page usually consists of a Web page containing a form with fields
asking for particular information about the user (typically name, address, phone, etc.)
that is needed to complete the sale of the product.

Advertisers, contrary to the name given to them by the industry, do not gener-
ally handle the advertisement distribution aspects themselves. Rather they leave the
complications of distribution and tracking of advertising media to a third party called

448
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a Network. A Network is basically the middle man between the Advertiser and the
Web Publisher (known as an “Affiliate” to the Network). An Affiliate simply places
a small piece of HTML on their Web site, which causes a user’s Web browser to
contact the Network’s servers to download a banner image. This download request
triggers a “view” hit for the downloaded banner image on the Network’s servers. In
addition to the HTML banner image reference, the Affiliate also places a hyperlink
around the banner image which causes browsers to send a request for a Web page to
the Network’s server whenever the Web user clicks on the banner image. When the
user does click on the banner image and their Web browser sends a page request to
the Network’s server, it triggers a “click” hit for the banner image and a subsequent
HTTP redirect to the Advertiser’s landing page. The Network charges the Advertiser
for distributing banner images depicting their products to the Web surfing public on
Affiliate Web sites. The Network then, after taking a percentage for its commission,
pays the Affiliate for the placement of the advertisement on their Web site. To fairly
distribute funds to the appropriate Affiliates and charge the Advertiser for the appro-
priate amount, the Network has to keep track of every single view and click of every
single banner image on every one of their Affiliates’ Web sites. Needless to say there
are millions upon millions of views and clicks tracked every day and all the tracking
data are kept in a database table by the Network.

The goal of this chapter is to analyze the statistical information of the ratio of clicks
to views, that is, the click-thru rate, and map them out to a classification of banner
image attributes, thereby giving us a tool for predicting (with a certain probability) the
statistical (click-thru) outcome of a new banner image. The classification method used
currently is the Naive Bayesian Classification. The end result is a Web-based program
capable of taking in a GIF image as input, calculating the probable classifications
(click-thru) based on the attributes chosen for consideration by the user, and outputting
the results in a sorted manner.

This banner image profiling tool will be useful for many parties in the Web adver-
tising industry. Advertisers can test new banner images to determine their probable
profit (via the click-thru statistics of already run banner images) and choose or de-
sign banners such as to maximize their profit. Affiliates can do the same within the
scope of their site so that they can determine the types of banner images that do
well within their site; they may even go so far as to determine the optimum position
for the banner image on their Web site based on the results of the classification. The
Network, being the middle man, is capable of using this probability knowledge in clas-
sifying new banner images such as to dynamically send statistically probable profit-
maximizing banner images to the users’ Web browser as they visit an Affiliate’s Web
site.

Although many works have been done on mining image data [2–5, 7, 8], to the
best of our knowledge, our Bayesian Banner Profiler system is a novel application of
data mining on banner images. Our system is implemented in Perl, and currently it
supports classification on GIF banner images.

The rest of the chapter is organized as follows. Section 2 briefly reviews the naı̈ve
Bayesian Classification. Section 3 details the Bayesian Banner Profiler framework.
Section 4 presents some implementation details. Finally we conclude the chapter and
discuss some future work.
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22.2 Naı̈ve Bayesian Classification

A Bayesian Classifier is a statistical method that can predict class membership of an
otherwise unclassified object. The classifier is based on Bayes’ theorem for calculating
“posterior probabilities” [6, 9, 10]. A posterior probability P(C |A) is one in which the
probability that the unclassified object belongs to class C , given the known background
information A.

Bayes’ Theorem provides a way of calculating P(C |A) using the knowledge of
P(C), P(A), and P(A|C), where P(C) is the probability of class C occurring in the
entire data set, P(A) is the probability of the attributes occurring in the entire dataset
(which is a constant across the classes), and P(A|C) is the probability of the attributes
A occurring in the class C . Bayes’ Theorem can be formalized as follows:

P(C |A) = P(A|C) ∗ P(C)

P(A)
(22.1)

Using this equation, it is possible to compute the probability that an unclassified
object having attributes A belongs to each of the classes C . To find the actual class
that the unclassified object belongs to, we simply try to maximize on the probability
(the highest probability wins). That is:

max(P(Ci |A)) for all classes i

or,

max(P(A| Ci ) ∗ P(C)) for all classes i (22.2)

Since P(A) is constant across the classes, it can be dropped as it is not worth
maximizing.

The Naive Bayesian Classification is named so because of its naive assumption
of “class conditional independence,” that is, it assumes that there are no dependent
relationships between the attributes. However the Naive Bayesian Classification has
been shown to have some good results even when the presumption proves false [1].

For the purpose of this chapter, we defined our classes C as click-thru rates
(clicks/views) and our attributes A as the various banner image attributes. By doing
so it gives us the ability to predict the probabilities that an unknown object (banner
image) having the attributes (image attributes) A will belong to a class C (a click-
thru value). This means we can extract the image attributes from a new unclassified
banner image and figure out the most probable click-thru rate that the banner image
will achieve once we actually put it into the real Web world.

22.3 The Bayesian Banner Profiler Framework

The Bayesian Banner Profiler framework consists of four major parts:

� Web-CGI interface server script
� GIF image attribute extraction program
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� Attribute quantization algorithm
� Bayesian probability computation algorithm

The current implementation also affords users the ability to choose from different
profiler configurations. Each profiler consists of:

� A quantizationSchema, which describes the methods of converting the raw image
attribute value into a quantized (or discrete) value that is easier to work with.

� A bayesianCounts, which is a Perl hash table containing the pre-calculated classes
(click-thru categories) and counts of the image attributes from our data sets. These
counts are used later by the Bayesian classification algorithm.

22.3.1 GIF Image Attribute Extraction

The GIF image attribute extraction program takes in as input a GIF file path. After
it has read the GIF file and extracted the image attributes, it is capable of outputting
either a plain text output of the image attributes, or a valid Perl hash syntax structure
of the image attributes (Perl hash is an associate array that provides fast retrieval of
key/value pairs). In the current implementation, the following attributes are extracted
from each GIF image:

� Screen Dimensional Data
◦ Height: The overall height of the image in screen real-estate pixels
◦ Width: The overall width of the image in screen real-estate pixels

� Meta Data
◦ num colors: The number of colors in the color table index of the GIF file
◦ has transparency: A boolean representing the presence (or lack) of transparency

portions
◦ num frames: The total number of frames in the entire GIF file
◦ total opaque pixels: Calculated by counting all nontransparent pixels in all

� Histogram Color Data: The number of occurrences of each color in the entire image
◦ histofreq 1 . . . histofreq 5: The top five colors in the image (in hex notation)
◦ histogram num colors: The total number of unique colors in all frames

� Frame Data
◦ frame time:min: The minimum delay from one frame to another between all

frames in the entire GIF
◦ frame time:max: The maximum delay from one frame to another between all

frames in the entire GIF
◦ frame time:avg: The average delay from one frame to another between all frames

in the entire GIF
� Intensity Data (from Hue/Saturation/Intensity color model): The grayscale intensity

value obtained by averaging the red, green, and blue channel values together
◦ intensity:min: The minimum intensity in the entire GIF
◦ intensity:max: The maximum intensity in the entire GIF
◦ intensity:avg: The average intensity in the entire GIF (using total opaque pixels)
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� Primaries Channel Data: Separates a pixel into its primaries parts: red, green, and
blue
◦ primaries:red avg: The average red contribution to the entire GIF
◦ primaries:green avg: The average green contribution to the entire GIF
◦ primaries:blue avg: The average blue contribution to the entire GIF
◦ primaries:red percent: Percentage of the GIF contributed to by red
◦ primaries:green percent: Percentage of the GIF contributed to by green
◦ primaries:blue percent: Percentage of the GIF contributed to by blue

Through the Web interface the user is able to choose any combination of at-
tributes to consider when running the Naive Bayesian Classification algorithm on the
unclassified object.

22.3.2 Attribute Quantization Algorithm

The attribute quantization algorithm, that is, the quantizer, runs through the image
attributes that were extracted and quantizes each to discrete values. For example, the
intensity average attribute, which usually has a value ranging from 0 to 255, is split
and mapped into eight discrete value ranges. This quantization step helps define the
closeness of an attribute between two images.

The quantizer engine takes in as input the raw image attributes hash and a quan-
tizationSchema. It then iterates through the attributes applying the translations that
the schema defines for each. It modifies the attributes hash in place with the new
quantized values and returns. The quantizationSchema is in reality a Perl hash that
mirrors the structure of the attribute hash. For each attribute in the schema:

� If the value is a scalar (i.e., string), it will use the scalar as the new quantized value.
This is useful for essentially canceling the effect of an attribute by mapping all
values into one value.

� If the value is a subhash, it tries to map the value from the attribute hash as a key
in this subhash and uses the value it gets as the new quantized value.

� If the value is a subarray (containing arrays of value ranges), it iterates through the
subarray looking for a range that the attribute value falls within and uses that index
in the subarray as the new quantized value.

� If the value is a reference to a Perl code (anonymous subroutine), it will call the
subroutine passing it the reference to the parent attribute hash and the actual attribute
value. It is that subroutine’s responsibility to modify the attribute value into a new
quantized value.

Currently the system makes use of the subarray of value ranges to map out sev-
eral of the attributes that deal with pixel values. The anonymous perl code method
is also used when we map the histogram subarray (after sorting) into histofreq 1,
histofreq 2 . . . histofreq 5; as well as a quick way to mutate and round up the click-
thru values (considered the “class” attribute). We believe that this design of the quan-
tizationSchema provides maximum flexibility in translating any arbitrary attribute
value into a quantized value.
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Since the quantizerSchema is associated with a profiler, we can essentially change
the entire inner working of how image attributes are dealt with by simply choosing a
different profiler from the user interface.

22.3.3 Bayesian Probability Computation Algorithm

The Bayesian probability computation algorithm uses the Naive Bayesian classifi-
cation method to compute the probability that the input image falls within a certain
class of images based on the image attributes.

The Bayesian algorithm takes in as input the quantized image attributes hash, the
bayesianCounts hash, and an array of attributes (input by the user) that it should use
in the probability consideration. It then computes for each class (i.e., classification
category) the probability, using the quantized image attributes hash that the image
belongs to it.

The classes in the current implementation are set up to represent the click-thru
rate of the banner images. The click thru rate, as previously mentioned, is a kind of
normalizing method on the statistical data (i.e., views and clicks) of all the banner
images. The click-thru measurement is an immensely popular way of rating banners
and advertising campaigns. It is calculated by dividing the sum of the unique clicks
of the banner image to the sum of the unique views of the banner image. If the unique
views are less than or equal to 0, we assume that the unique clicks and the click-thru
are also 0 since a user cannot possibly click on a banner image that is not displayed
to them. Formally the click-thru can be defined as follows:

For a given banner image i,

if

(∑
i

unique view(i) > 0

)

click−thru(i) =

∑
i

unique click(i)

∑
i

unique view(i)

else
click−thru(i) = 0

(22.3)

Click-thru rates, by nature of the division, can range from values 0.0 to 1.0 (but in
the industry they usually top out around 0.20). To deal with these miniscule values, the
current implementation actually explodes the value by a factor of 1000 to bring more
distinction between the click-thrus and thereby giving us more classes to classify into.
In our model, click-thru rates are treated as continuous data.

Rather than tediously recalculating the click-thrus and Bayesian counts for the
entire data set each time the user queries the system, the current implementation
uses a precomputed hash of counts and classes called the bayesianCounts hash. This
hash file is combined with the quantizationSchema to represent a Bayesian Profiler
configuration.
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Tweaking the quantizationSchema and the building of the bayesianCounts file
gives the system an unprecedented flexibility. Since the bayesianCounts file is also
governed by a profiler, the user can easily switch to a different set of data (bayesian-
Counts) by simply selecting a different profiler in the user interface.

22.4 Implementation

The Bayesian Banner Profiler system is implemented in Perl. Figure 22.1 shows the
initial user interface of the Bayesian Banner Profiler tool.

This user interface consists of five important panels:

� The Image Source Panel: This panel contains user interface elements concerned
with specifying the sample source image (the test case).

� The Image Upload Panel: When the user chooses “New . . . ” from the Source pull-
down, he or she is prompted to either upload an image file through the browser or
specify the URL of an image on the Web.

� The Image Preview Panel: When an image is chosen from the pulldown, a preview
(dimension restricted) version of the image is displayed in this panel.

Fig. 22.1. Bayesian banner profiler.
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Fig. 22.2. A sample result of classification.

� The Attributes Panel: The user can choose from any combination of image attributes
to consider when doing the Bayesian probability computation. At least one attribute
is required for the calculation to be useful.

� The Menu Panel: This panel contains the submit button and the hidden results panel.
In the future as more general query-specific elements are added they will be placed
here.

Figure 22.2 shows the results of a successful classification performed by the
profiler. Note how the preview image panel has changed to display the currently
selected test case source image and the attributes the user has chosen to consider for
the Bayesian classification algorithm.

Figure 22.2 also shows the resulting table of probabilities (sorted in descending
order from most probable) and classes displayed below the SUBMIT button. The
resulting table of probabilities is currently implemented to list the top 10, but it can
easily be changed to any arbitrary splice of the results array. Also note that the range
of the click-thru is within 0 to 1 while in the result panel the click-thru (shown in
class column) is multiplied by 100 to show the difference.

The system was primarily developed on GNU/Linux. A custom-built limited pro-
tocol supporting HTTP server (with Perl-CGI capabilities) was created. The interface
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between the HTTP server and the Bayesian Banner Profiler program is completely
CGI. This means that the Bayesian Banner Profiler program can be taken out and used
within Apache (via mod cgi) or some other CGI standards conforming Web server at
no change.

Since the Web advertising industry does most of its banner advertising in GIF
formats to support the majority of antique Web browsers, we support GIF format in
our system. Currently we do not support PNG image format even though GIF format
can be easily translated into PNG format. The reason is that the translated PNG image
attributes are not staying true to the original GIF version. In addition, since PNGs do
not support animations, we would lose all the interframe information such as frame
delay.

22.5 Conclusions and Future Work

In this chapter we have presented a framework for a novel application of classification
on banner images, that is, the Bayesian Banner Profiling framework. By classifying
the click-thru rates based on the attributes extracted from the banner images can help
improve the effectiveness of advertisement.

Currently we support some low-level image attributes. Our test results of banner
images vary in accuracy and we feel that adding high-level attributes can aide in
improving the accuracy and stability of the system. After all, human beings usually
do not click on banner images based on such low-level details as the number of colors;
rather they click on banners based on their aesthetic qualities and content. Fortunately
the framework of our system is flexible enough to include more attributes, including
high-level image attributes.

One of the improvements to this system would come from extracting better image
attributes from the GIFs in which to classify on. The current implementation has a
limited number of low-level attributes to choose from. There is, however, a largely
untapped realm of higher abstraction image analysis awaiting the future of this system,
for example, using motion and blink detection, using OCR to detect text in the image,
and using object detection to parse individual objects from the image (banners usually
clip-art images from image CDs). By doing this, many other attributes can be added
to the classification. In addition, we would like to support more banner formats than
just GIF images; particularly we would like to add support for JPEG and PNG image
as well as Macromedia Shockwave Flash SWF files.
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23. Analyzing User’s Behavior on a
Video Database

Sylvain Mongy, Fatma Bouali, and Chabane Djeraba

Summary. The analysis of user behaviors in large video databases is an emergent problem.

The growing importance of video in every day life (e.g., movie production) is linked to the

importance of video usage. To cope with the abundance of available videos, users of these

videos need intelligent software systems that fully utilize the rich source information hidden in

user behaviors on large video databases to retrieve and navigate through videos. In this chapter,

we present a framework for video usage mining to generate user profiles on a video search

engine in the context of movie production. We suggest a two-level model-based approach

for modeling user behaviors on a video search engine. The first level aims at modeling and

clustering user behavior on a single video sequence (intravideo behavior), the second one aims

at modeling and clustering user behavior on a set of video sequences (intervideo behavior). On

the basis of this representation, we have developed a two-phase clustering algorithm that fits

these data.

23.1 Introduction

With the fast development in video capture, storage and distribution technologies, dig-
ital videos are more accessible than ever. The number and volume of these archives
are soaring. To deal with it, video usage mining, which aims at analyzing user be-
haviors on a set of video data, is one of the key technologies to create suitable
tools to help people browsing and searching the large amount of video data. In-
deed, as in Web mining field the extracted information will enable to improve video
access.

Particularly, the professional users of the audiovisual sector actually need suitable
video search engine. They are dealing daily with large video warehouses that require
appropriate tools. Classical approaches are based on indexing techniques. Each video
is manually or semiautomatically indexed on the basis of the definition of several
attributes (place, actors, director, main color . . . ). The limit of this kind of technique
is the inability to deal with a complete well-indexed database. Either automatical or
manual indexing leads to indexation errors.

We propose here to analyze the behavior of the users of the video search engine
to improve the quality of the retrieved data. Our goal is to understand which, how,
and why each video has been viewed by users. On the basis of clustering technique,

458
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Fig. 23.1. Overview of the video usage mining framework.

we retrieve the archetype of visitors. Further work will use these results to improve
indexing technique and searching algorithms.

In this chapter, we present a framework (Fig. 23.1) that combines intravideo
usage mining and intervideo usage mining to generate user profiles on a video search
engine in the context of movie production. Specifically, we have borrowed the idea
of navigation history from Web browsers used in Web usage mining, and suggest a
new approach that defines two types of log from the log data gathered on a video
search engine. The first one concerns the way a user views a video sequence (play,
pause, forward . . . ) and can be called intravideo usage mining. At this level we define
the “video sequence viewing” as a behavior unit. The second type of log tracks the
transitions between each video sequence viewing. This part gathers requests, results,
and successive viewed sequences. At this higher level, as in Web mining we introduce
a “session” as a behavior unit.

An intravideo user behavior is modeled by a first-order and nonhidden Markovian
model. This model is constructed using the different actions proposed to the user while
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he is viewing a video sequence (play, pause, forward, rewind, jump, stop). We propose
an effective clustering method of these behaviors (K-models). This technique is an
adaptation of the well-known k-means [1] to the use of models instead of means. This
enables us to characterize several behavior types (complete viewing, overview, open–
close, precise scene viewing). Based on these behaviors, viewing will be precisely
defined and then we will be able to know which was the use of a video in a session
(whether if it is the most important or if it is just the result of a bad search).

An intervideo user behavior is modeled by a session that is a time-ordered se-
quence of the viewed video sequences. Each video sequence is represented by the
intravideo models carried out in the precedent stage. To cluster the sessions, we adapt
a classical hierarchical clustering technique to deal with the particularity of these
data.

This chapter is organized as follows. In Section 2, we present the related work in
Web usage mining field and in video usage mining field and we draw up the differences
between these two fields. Section 3 begins by describing the context of our approach
that is movie production and the log gathering process, then it presents our two-level
model-based approach for modeling users’ behaviors on a video search engine. The
first level aims at modeling and clustering users’ behavior on a single video (intravideo
behavior), the second one aims at modeling and clustering users’ behavior on a set
of video sequences (intervideo behavior). Finally, section 4 describes the evaluation
of the technique on some test data sets, and Section 5 gives the conclusion and some
future directions.

23.2 Related Work

23.2.1 Web Usage Mining

Web Usage Mining is defined as the use of different data mining techniques to analyze
the information collected by Web servers in large log files by modeling Web’s user
navigational behavior. Several Web usage mining systems have been developed and
applied successfully in various fields such as Web analytics and e-commerce, data
analysis [2], Web personalization [3], Web site evaluation or reorganization [4], and
link prediction and analysis [5].

There are three consecutive steps in the process of data mining from Web access
logs: the first step is to gather and preprocess data of the log files, the second one
consists of pattern discovering, and the last one consists of analyzing the discovered
patterns. To discover relevant patterns a variety of algorithms such as association rule
mining, sequential pattern analysis, clustering, classification, and Markovian models
can be used on the transformed data.

In paper [6] the authors propose a methodology for the visualization of navigation
patterns. A model-based clustering approach is used in which users presenting similar
navigation patterns are grouped into the same cluster. The behavior of the users within
each cluster is represented by a Markovian model. In [5], the authors proposed a
system which is used to demonstrate the utility of Markovian models in link prediction
and path analysis on the Web. Experimental results are reported which show that a
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Markovian model can be useful both in the prediction of http requests and in the
prediction of the next link to be requested.

In paper [7] the authors propose an algorithm based on sequence alignment to
measure similarities between Web sessions where sessions are chronologically or-
dered sequences of visited pages. This measure takes into account the sequence of
event in a click-stream visitation. To cluster sessions, after identifying the sessions in
a preprocessing phase, they use known clustering algorithms [8]. Their experiments
in a context of e-learning show that discovered clusters are more meaningful than
those one discovered when the similarity measure used to compare sessions is basi-
cally calculated on intersections between these sets, such as the cosine measure or
the Jaccard coefficient used for example in [9].

In paper [10] the authors develop a unified framework for the discovery and
analysis of Web navigational patterns based on probabilistic latent semantic analysis
(PLSA). This technique can automatically characterize the users’ underlying navi-
gational objectives and discover the hidden semantic relationships among users as
well as between users and Web objects. These relationships are measured in terms
of probabilities. Using probabilistic inference, they are able to discover a variety of
usage patterns like: the characterization of a task by a group of most related pages;
the identification of prototypical users who perform a certain task; the identification
of underlying tasks present in a specific user’s activity; and the characterization of
user groups (or segments) that perform a similar set of tasks.

23.2.2 Video Usage Mining

In the absence of any prior survey of video usage mining, the closest related work
can be classified into roughly two types.

The first type of work concerns the analysis of user behaviors without considering
the video content. These works report on statistics of user behavior and frequency
counts of video access. For example, Reuther and Meyer [11] analyze the student usage
of an educational multimedia system. This analysis is based on the student personality
types. Indeed, the learning needs and expectations depend on the characteristics of
the student personality type. To achieve this, the authors have developed a program
that extracts the student’s actions on the multimedia system and profiles what each
user did each time he has used the system. These user profiles include the following
statistics: number of video viewing sessions, total seconds spent viewing videos,
number of video viewing sessions that lasted more than 20 min, average duration of a
video viewing session, average number commands per minute during video viewing
sessions, forward transitions, backward transitions, forward jumps, and jump ratio.
While being based on the statistics collected on each type of students, they analyze
how the learning multimedia system can be improved to remedy its shortcomings.

In [12] the authors present an analysis of trace data obtained from user access on
videos on the Web. The authors examine properties such as how user requests vary
on a day-to-day basis, and whether video accesses exhibit any temporal properties.
They propose to benefit from these properties to design the multimedia systems such
as Web video proxy caches, and video servers. For example the analysis revealed that
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users preview the initial portion of a video to find out whether they are interested. If
they like it, they continue watching, otherwise they stop it. This pattern suggests that
caching the first several minutes of video data should improve access performance.

The second type of work relates to the behavior analysis on a single video.
In paper [13] the authors present a framework that combines video content analysis

and user log mining to generate a video summary. They develop a video browsing
and summarization system that is based on previous viewers browsing log to facilitate
future viewers. They adopt the link analysis technique used in Web mining and propose
a concept of ShotRank that measures the importance of each video shot. User behavior
is simulated with an Interest-guided Walk model, and the probability of a shot being
visited is taken as an indication of the importance of that shot. The resulting ShotRank
is used to organize the presentation of video shots and generate video skims.

The lack in the previous work is to correlate general behavior of the users with
their behavior on each of the videos. They do not take into account actions done
during a video viewing while considering navigation between video sequences. In
short, these works are rather distant from our context. The navigation and research
concepts in a large video data base are missing. Moreover, there are neither standards
nor benchmarks on video log data.

Two important points differentiate our approach of these works. First, there are
no tools working on usage of complete video database exploration. The only works
we have referenced for the field of video analysis consider only a video at once. The
closest technique is the one concerning Web Usage Mining. However, here the log
data are more complete and we will be able to fully exploit them.

Second, we have developed a clustering technique that fits our data. Indeed, many
Web Usage Mining techniques are based on distance-based clustering algorithms
and neighborhood comparison. This leads to results that are hard to analyze. In such
approaches, two sessions are associated to the same cluster if they are connected by
a chain of very close neighbors, even if they are completely different. We introduce
here a model to represent cluster that gathered information given by every element,
each of these elements corresponding to this model.

23.3 Proposed Approach

23.3.1 Context

One of the needs of the professional users of the audiovisual sector is to be able to
find existing video sequences in order to reuse them in the creation of new films. Our
approach is based on the use of a well-suited video search engine (Fig. 23.2). Our tool
is a classical browser for finding video in large databases. Searches are executed on
content-based indexing. Much hidden information can be extracted from the usage
and used to improve the closeness between requests and videos returned by the search
engine.

To achieve this task, we first need to define what a usage of a video search engine
is. Such a behavior can be divided into three parts. (1) Request creation: the user
defines its search attributes and values. (2) Result set exploitation: found sequences
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Fig. 23.2. The video search engine.

are presented to the user. They are ordered by an attribute-based confidence value.
(3) Selected sequences viewing: the user is viewing sequences he is interested in.
This viewing is achieved with a video browser offering usual functions (play, pause,
forward, rewind, stop, jump).

Groups of viewed sequences form sessions. They correspond to a visit of a user.
They are a compund of several searches and video sequences viewing episodes.

23.3.2 Gathering Data

All of these data are collected and written into log files. To create these files, we define
an XML-based language. A session is gathered as follows. The first part contains the
request executed and the list of video sequences returned. The second one logs the
viewing of sequences.

The grammar of a session is as follows. A first part contains the request executed
and the list of video sequences returned (Fig. 23.3). A second one logs the viewing
of sequences (Fig. 23.3).

These two XML codes are easily understandable. The first one corresponds to a
request (request tag). It is composed of a list (keywordset tag) of pair keyword–value.
Selectable keywords are the one on which data are indexed. For each pair, we keep
its place in the request (i.e., the order that the user has entered values). In addition to
this list of keywords, we keep trace of the returned sequences (resultset tag). These
sequences are characterized by their identifier and the confidence value given by the
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Fig. 23.3. XML representation of a request (left) and of a video sequence viewing (right).

search algorithm. For example, the request presented in Figure 23.2 corresponds to a
search of video sequence with landscape containing a sunny weather and produced by
OAV. The second fragment of code shows how the viewing of a sequence is realized.
Each basic action (play, pause, forward) is logged with its start time and its duration
to respect to the video sequence.

Like Web logfile, our video logfile traces the actions of users. To extract sessions,
we have developed a converter that extracts and regroups sessions from this logfile in
XML format. The following part of the chapter explains how we propose to model a
video session.

23.3.3 Modeling User’s Behavior: A Two-Level Based Model

From the log data gathered previously, we generate two models to represent the user’s
behavior. The first one concerns the way a user views a video sequence (play, pause,
forward . . . ). At this level we define the “video sequence viewing” as a behavior unit.
The second one tracks the transitions between each video sequence viewing. This
part gathers requests, results, and successive viewed sequences. At this higher level,
we introduce a “session” as a behavior unit.

Presently our work is based only on sequences. We do not take into account the
information given by the requests. This will be further investigated.

A session is a list of viewed video sequences. The particularity and the interest of
the video log data will be the ability to define the importance of each sequence in each
session. More than a simple weight, comparable to time comparison in Web mining
[7], we will characterize here several behavior types (complete viewing, overview,
open–close, precise scene viewing). On the basis of these behaviors, viewing will
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be precisely defined and then we will be able to know which has been the use of a
video in a session (whether if it is the most important or if it is just the result of a bad
search).

23.3.3.1 Modeling and Clustering Intravideo User’s Behavior

An intravideo user’s behavior is modeled by a first-order nonhidden Markovian model
(Fig. 23.4). This model represents the probability to execute an action each second
of the viewing of a video. Each vertex represents one of the actions proposed to the
user while viewing. These actions are play, pause, forward, rewind, jump, and stop.
For example, the edge from play to pause means that when a user is playing a video,
there is a probability of 8% that he executes a pause the next second.

This model is fully determined by the following parameters:

Vi the vertices. N is set of the actions proposed to the user during a viewing. We have
set N = play, pause, forward, rewind, jump, stop .

πi the probability of starting in state i .
Ai j the transition probability from a state Vi to Vj during the next second. This dis-

cretization of time (taking the second for unit) introduced by [15] is interesting
because it considers time without any additional parameter.

Its limited complexity will allow us to propose an effective clustering method of
these behaviors.

We will here introduce the K-models clustering algorithm. This technique is
almost an adaptation of the well-known k-means to the use of models instead of
means. We try to find K clusters in a set of viewing actions (list of the actions
performed by user while viewing a video sequence) by partitioning space. Each

Fig. 23.4. Video sequence viewing behavior.
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cluster is represented by one of the models described below. The difference resides in
use of probability instead of distance to associate viewings to clusters. We calculate
the probability that a viewing has been generated by models. We then associate the
viewing to the cluster with the highest probability.

Such algorithm can be split in three phases: initialization, expectation,
maximization.

Initialization phase: The initialization phase, like for k-means, appears hard. Indeed
it is important to define appropriate models to start the clustering. Here, we
have some knowledge about the looked for clusters. First, Vi and πi are already
defined. The remaining problem is to determine the Aij. Even if data are varied,
the ways of watching a video is quite limited and constant regarding the type
of video type. After some tests on real data sets, we are able to well define the
initial models of the clusters, different enough from one to another and approx-
imately corresponding to the resulted models. They are four and correspond to
the following profiles: (1) complete viewing; (2) viewing of a precise scene;
(3) overview; (4) quick closure.

Expectation phase: For each sequence e = (e1 . . . el) ei belonging to N , of length l,
for each cluster determined by a model k, we calculate the probability that k
has generated e. e is associated to the cluster with the highest probability.

Maximization phase: Each model k representing a cluster c of size m is updated with
respect to the data belonging to c. This update corresponds to count each tran-
sition in each element ei and attributes these counts to the transition probability
of the model. For each cluster c, probabilities are updated this way.

On the basis of these discovered models, we create a vector of behavior for
each viewing. This vector corresponds to the probabilities that the viewing has been
generated by each model (Fig. 23.1).

ve = [
i=1

vi

i=K

], ∀i, vi = p(e|ki ) (23.1)

23.3.3.2 Modeling and Clustering Intervideo User’s Behavior

From the initial data set and the vector created with the intravideo clustering, we
construct a sequential representation of the sessions. A session is a time-ordered
sequence of the viewed video. Each viewing is characterized by a pair of the unique
identifier of the video and the vector of behavior connected to it. On the basis of this
representation of sessions, we have developed a clustering algorithm that satisfies the
following requirements: any element belonging to a cluster has a common part with
any other element of the cluster. The generality level of produced clusters relies on
the definition of some parameters given by the user.

These requirements lead us to define the representation of a cluster this way: a
cluster c is represented by a set of S sessions sc of minimal length l. A session s is
attributed to a cluster if it matches at least p of the S sessions. The session s matches
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sc if sc is a subsequence extracted from s (23.2).

is Subsequence((s1 . . . sn), (s ′
1 . . . s ′

m))

= ∃i ≤ n | { s ′
1 = si

is Subsequence((si . . . sn), (s ′
2 . . . s ′

m))
(23.2)

This way, we ensure the homogeneity of clusters and the fact that there is a common
factor between any elements of a cluster. Hence, we avoid obtaining clusters composed
of fully different elements, connected by a chain of next neighbors generally produced
by distance-based clustering techniques [8]. The minimum length of a representative
sequence and the number of sequences needed to model a cluster are given by the
analyst to allow him to retrieve clusters of the required homogeneity.

The clustering algorithm itself is based on classical hierarchical clustering algo-
rithm. It starts with considering little groups of sessions as clusters and iteratively
merge the two nearest clusters. The algorithm ends when the required level of ho-
mogeneity has been reached. Its originality is linked to the representation of clusters.
Classical sequence clustering techniques deal with a unique sequence to represent
a cluster. Here we have developed tools to be able to compare and merge clusters
represented by a set of sequences instead.

Compare Clusters: Let C1 = (s11 . . . s1S) and C2 = (s21 . . . s2S) be two clusters to
compare.

d(C1, C2) =
S∑

i=1

j=S

min
j=1

(d(s1i , s2 j )) (23.3)

This distance function (23.3) is based on a comparison of sessions. This one is
based on the longest common subsequence extraction. Given I = [(i1, i2)] the
list of length l of indices of selected element of the two compared sessions s1 and
s2, the distance between them is given by (23.4) where vxy is the behavior vector
of the yth element of the session x . (23.5) is the distance function between two
behavior vector.

d(s1, s2) =
∑

i1,i2
d(v1i1, v2i2)

l
(23.4)

d(v1, v2) =
∑K

i=1 |v1i − v2i |
K

(23.5)

Merge Clusters: The merging function is based on longest subsequence extraction
too. It extracts the longest subsequences comparing video identifiers from pairs
of sequences, each issued of a different cluster. Merging sequences by two
ensures that the proportion p is conserved until the end of the algorithm. Let
c1 = (s11 . . . s1S) and c2 = (s21 . . . s2S) be two clusters to merge (23.6).

merge(c1, c2) = [
i=S, j=S

merge
i=1, j=1

(s1i , s2 j )] (23.6)



P1: OTE/SPH P2: OTE

SVNY295-Petrushin August 16, 2006 20:18

468 Sylvain Mongy, Fatma Bouali, and Chabane Djeraba

i and j are selected to maximize the length of the merged sequences. To merge
two sequences, we extract the longest common subsequence without taking into
account the behavior vector. When this subsequence is created, we merge the
corresponding behaviors of the two initial sequences calculating the mean on
each element. Let v1 = (v11 . . . v1K ) and v2 = (v21 . . . v2K ) be two behaviors
to merge, the result of merging two behaviors is given by (23.7).

merge(v1, v2) = [
i=K , j=K
(v1i +v2 j )

2

i=1, j=1

] (23.7)

23.4 Experimental Results

This part will point out the following two abilities of our technique compared to usual
approaches. First, we will see how the analysis of the intravideo behavior allows a
division of groups of sessions that are composed of the same video but viewed in a
different manner. Then, we will demonstrate the advantage of describing a cluster by
a group of sessions compared to a simple subsequence extraction.

23.4.1 Creation of the Test Data Sets

Because of the lack of accurate data concerning video extraction, we have conducted
our tests on generated data sets.

The creation of the test data sets is divided into two phases. First, we have created
intravideo behavior models. We have defined four typical behaviors (complete play,
quick overview, partial play of a part, quick closure). Future experiments on real data
will allow us to fully determine these ones based on the use of the search engine.
On the basis of these models, we have randomly generated behavior vectors for each
viewing of the video sessions. Second, to create the video sessions, we have defined
source of clusters with a set of video identifiers sequences. For each cluster, we have
created session by randomly merging these sequences. Then, we have added in each
generated session about 5–20% of noise by adding into sequences viewing identifiers
that have no link with the content of the clusters.

Finally, we have generated different test data sets composed of 2000 sessions. Each
session is composed of 5–20 viewings that are linked to behaviors of 10–20 basic
actions (play, pause . . . ). The test files are then composed of around 100,000–800,000
basic actions.

23.4.2 Exploiting the Intravideo Behavior

This first scenario is based on the following assumption. We have a video database
of natural videos containing videos of mountains and volcanoes that is not correctly
indexed and many videos dealing with volcanoes are indexed like mountain videos.

We have generated two clusters. The first one corresponds to a search on volcanoes
and gives only a unique video completely viewed. The second one is the result of
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Table 23.1. Clusters description of the first data set.

Base model With intra behavior Basic approach

(1, 2, 3, 4, 5, 6, 10) (1, 2, 3, 4, 5, 6, 10)
(1, 2, 3, 4, 5, 6, 10)

(1, 2, 3, 4, 5, 6) (1, 2, 3, 4, 5, 6)

a search on mountains and every video are viewed completely (Table 23.1). With
a classical approach, that does not take into account intravideo behavior, the two
clusters are not discovered and the result is a unique cluster ((1, 2, 3, 4, 5)).

With our double-level approach, the technique is able to discover that the use of
videos has been different and the two clusters corresponding to the two searches are
discovered. For any value less than 6 of the minimum length of the representative
sequence, clusters ((1, 2, 3, 4, 5, 6)) and ((1, 2, 3, 4, 5, 10)) are returned.

23.4.3 Multiple Subsequence Cluster Modeling

The following experiment points out the advantage of modeling clusters with a set
of sequences instead of a unique sequence. We have generated data corresponding
to four clusters. Three of them are about ski place and are composed of 1 specific
sequence and 3 others shared: Mountain, corresponding to the subsequence (18, 73,
29, 41); Snowboard (17, 25, 12, 19, 87); Ski (129, 2, 73, 32, 91). The last cluster is
composed of a search on mountain too (18, 73, 29, 41) and an other one on trekking
(2, 3, 4, 8). For this set, every video has been completely viewed (Table 23.2).

Setting the minimum quantity of representative sequences to 2 or 3, sessions cor-
responding to any of the three first clusters are merged to form a cluster corresponding
to “sessions dealing with ski places.” With a value of 4, this cluster is split and each
source cluster is discovered. For this value, the cluster corresponding to mountain and
trekking is correctly analyzed and not merged with the other data. But if we use the

Table 23.2. Clustering of the second data set.

Results

Freq. viewed videos minSize = 2 or 3 minSize = 4 minsize = 1

(18, 73, 29, 41) {(18, 73, 29, 41)

{(18,73,29,41)}

(17, 25, 12, 19, 87) (17, 25, 12, 19, 87)

(129, 2, 73, 32, 91) (129, 2, 73, 32, 91)

(301, 302, 303, 304) (301, 302, 303, 304)}
(18, 73, 29, 41) {(18, 73, 29, 41) {(18, 73, 29, 41)

(17, 25, 12, 19, 87) (17, 25, 12, 19, 87) (17, 25, 12, 19, 87)

(129, 2, 73, 32, 91) (129, 2, 73, 32, 91)} (129, 2, 73, 32, 91)

(401, 402, 403, 404) (401, 402, 403, 404)}
(18, 73, 29, 41) {(18, 73, 29, 41)

(17, 25, 12, 19, 87) (17, 25, 12, 19, 87)

(129, 2, 73, 32, 91) (129, 2, 73, 32, 91)

(501, 502, 503, 504) (501, 502, 503, 504)}
(18, 73, 29, 41) {(18, 73, 29, 41) {(18, 73, 29, 41)

(2, 3, 4, 8) (2, 3, 4, 8)} (2, 3, 4, 8)}
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value of 1, leading to a classical subsequence extraction, all of these data are merged
in a unique cluster and the difference between ski places and mountain hiking is not
detected by the clustering.

23.5 Future work

We propose a two-level model-based approach for modeling user behaviors on a
video search engine. The first level aims at modeling and clustering user behavior
on a single video sequence (intravideo behavior), the second one aims at modeling
and clustering user behavior on a set of video sequences (intervideo behavior). On
the basis of this representation, we have developed a two-phase clustering algorithm
that fits these data. We have showed that our approach is able to differentiate sessions
dealing with the same videos but in different manners and to discover clusters that
are not detected by basic subsequence approaches.

The main remaining work is to validate our technique on real data sets in a context
of movie production. We have to ensure that results are still interesting on large video
database.

The future objective is to use the extracted profiles to perform better searches.
Indeed, these results will allow us to point out the badly indexed data, to change it,
and to be able to propose video sequences to the users related to the history of their
session.
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24. On SVD-Free Latent Semantic Indexing
for Iris Recognition of Large Databases

Pavel Praks, Libor Machala, and Václav Snášel

Summary. This chapter presents a method for an automatic identification of persons by

iris recognition. A raster image of a human iris is represented as a sequence of color pixels.

Information retrieval is conducted by the Latent Semantic Indexing (LSI) method. The pattern

recognition algorithm is powered very effectively when the time-consuming Singular Value

Decomposition (SVD) of LSI is replaced by the partial symmetric eigenproblem. Numerical

experiments on a real 488 MB biometric data collection indicates feasibility of the presented

approach as a tool for automated image recognition without special preprocessing.

24.1 Introduction

Methods of human identification using biometric features like fingerprint, hand ge-
ometry, face, voice, and iris are widely studied. A human eye iris has its unique
structure given by pigmentation spots, furrows, and other tiny features that are stable
throughout life (see [1, 2]). It is possible to scan an iris without physical contact in
spite of wearing eyeglasses or contact lens. The iris can be hardly forged, for exam-
ple, replaced or copied. This makes the iris a suitable object for the identification of
persons. Iris recognition seems to be more reliable than other biometric techniques
like face recognition [3]. Iris biometrics systems for public and personal use have
been designed and deployed commercially by British Telecom, US Sandia Labs, UK
National Physical Laboratory, NCR, Oki, IriScan, and others. Applications of these
systems are expected in personal identification, access control, computer and Internet
security, etc. Studies about iris recognition were published in [1–7].

The method proposed by Daugman [1, 2] is based on the transformation of ele-
mentary regions of the iris image into polar coordinates. Then, using two-dimensional
optimal Gabor functions, a binary iris code is generated. The iris identification con-
sists of comparisons of the generated codes using Hamming distance. In [6] the field
of interest is transformed into standardized polar coordinates similarly as in [2]. The
characteristic iris vector is computed from the mean brightness levels of elementary
ring sectors of the iris image.

Liam et al. [5] use a trained Self-Organizing Map Neural Network to recognize
iris patterns. The iris of doughnut shape is converted into a rectangular form and

472
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fed to the neural network. Roche et al. [7] propose an iris recognition method where
the features of the iris are represented by fine-to-coarse approximations at different
resolution levels. In this technique the discrete dyadic wavelet transform was used.

In this article, we present an alternative approach to the recognition of human iris
images. The aim is to show that the Latent Semantic Indexing [8,9] is as a good way
for recognizing images as other above-mentioned methods [10]. Moreover, the pattern
recognition can be powered very effectively when the time-consuming Singular Value
Decomposition, of LSI is replaced by the partial symmetric eigenproblem, which can
be solved by using fast iterative solvers [11].

24.2 Image Retrieval Using Latent Semantic Indexing

The numerical linear algebra, especially Singular Value Decomposition, is used as a
basis for information retrieval in the retrieval strategy called Latent Semantic Indexing
(see [8, 9]). Originally, LSI was used as an efficient tool for semantic analysis of
large amount of text documents. The main reason is that more conventional retrieval
strategies (such as vector space, probabilistic and extended Boolean) are not very
efficient for real data, because they retrieve information solely on the basis of keywords
and polysemy (words having multiple meanings) and synonymy (multiple words
having the same meaning) are not correctly detected. LSI can be viewed as a variant
of the vector space model with a low-rank approximation of the original data matrix
via the SVD or the other numerical methods [8].

The “classical” LSI application in information retrieval algorithm has the follow-
ing basic steps:

i) The Singular Value Decomposition of the term matrix using numerical linear
algebra. SVD is used to identify and remove redundant noise information from
data.

ii) The computation of the similarity coefficients between the transformed vectors of
data and thus reveal some hidden (latent) structures of data.

Numerical experiments pointed out that some kind of dimension reduction, which
is applied to the original data, brings to the information retrieval following two main
advantages: (i) automatic noise filtering and (ii) natural clustering of data with “sim-
ilar” semantic (see Figures 24.1 and 24.2).

24.2.1 Image Coding

Recently, the methods of numerical linear algebra, especially SVD, are also success-
fully used for the face recognition and reconstruction [12], image retrieval [10, 11],
and as a tool for information extraction from HTML product catalogues [13]. In this
chapter, the Latent Semantic Indexing is used as the tool for solving iris recognition
problem.

In our approach [10, 11], a raster image is coded as a sequence of pixels (see
Figure 24.3). Then the coded image can be understood as a vector of an m-dimensional
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Fig. 24.1. An example of LSI image retrieval results. Images are automatically sorted by their

content using the partial eigenproblem.

space, where m denotes the number of pixels (attributes). Let the symbol A denote a
m × n term-document matrix related to m keywords (pixels) in n documents (images).
Let us remind that the (i, j)-element of the term-document matrix A represents the
color of i-th position in the j-th image document (see Figure 24.4).

24.2.2 Document Matrix Scaling

Our numerical results pointed out that there is a possibility to increase the ability of
the LSI method to extract details from images by scaling of the document matrix. This
feature of the method was also exploited to iris recognition. Let the symbol A(:, i)
denote the i-th column of the document matrix A. We implemented the following
scaling1:

for i = 1:n % Loop over all images

A(:,i) = A(:,i)/norm(A(:,i))

end;

1 For the description of matrix-oriented algorithms we used the well-known Matlab-like nota-
tions [14]. For instance, the symbol A(:, i) denotes the i-th column of the matrix A.
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Fig. 24.2. An example of a similarity measure is the cosine similarity. Here A, Q, B represents

the vectors. Symbols ϕA and ϕB denote the angle between the vectors A, Q and B, Q, respec-

tively. The vector A is more similar to Q than vector B, because ϕA < ϕB. A small angle is

equivalent to a large similarity.

Fig. 24.3. Image coding of an 3 × 2 pixels image example and the corresponding six-

dimensional vector.

Fig. 24.4. An example of document matrix coding. The document matrix A is represented as

a sequence of coded images.
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24.3 Implementation Details of Latent Semantic Indexing

In this section we will derive the SVD-free Latent Semantic Indexing and we will
present the implementation of the LSI algorithms.

We will show two modifications of the original LSI algorithm presented in [9].
Here presented the SVD-free modifications of the original LSI algorithm replaced the
time-expensive SVD decomposition of a general document matrix by the approximate
solution of a partial symmetric eigenproblem of a square matrix.

24.3.1 LSI and Singular Value Decomposition

Let the symbol A denotes the m × n document matrix related to m pixels in n images.
The aim of SVD is to compute decomposition

A = U SV T , (24.1)

where S ∈ Rm×n is a diagonal matrix with nonnegative diagonal elements called the
singular values, U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices.2 The columns of
matrices U and V are called the left singular vectors and the right singular vectors,
respectively. The decomposition can be computed so that the singular values are sorted
in decreasing order.

The full SVD decomposition (24.1) is memory and time-consuming operation,
especially for large problems. Although the document matrix A is often sparse, the
matrices U and V have a dense structure. Because of these facts, only a few k-largest
singular values of A and the corresponding left and right singular vectors are computed
and stored in memory. The number of singular values and vectors that are computed
and kept in memory can be chosen experimentally as a compromise between the
speed/precision ratio of the LSI procedure.

We implemented and tested LSI procedure in the Matlab system by Mathworks.
The document matrix A was decomposed by the Matlab command svds. Using the
svds command brings following advantages:

� The document matrix A can be effectively stored in memory by using the Matlab
storage format for sparse matrices.

� The number of singular values and vectors computed by the partial SVD decom-
position can be easily set by the user.

Following [9] the Latent Semantic Indexing procedure can be written in Matlab
by the following way.

Procedure Original LSI [Latent Semantic Indexing]
function sim = lsi(A,q,k)

% Input:

% A ... the m × n matrix

% q ... the query vector

2 A matrix Q ∈ Rn×n is said to be orthogonal if the condition Q−1 = QT holds.
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% k ... Compute k largest singular values

and vectors; k ≤ n
% Output:

% sim ... the vector of similarity coefficients

[m,n] = size(A);

1. Compute the co-ordinates of all images in the k-dimensional space by the
partial SVD of a document matrix A.
[U,S,V] = svds(A,k);
% Compute the k largest singular values of A; The rows of V contain the co-
ordinates of images.

2. Compute the co-ordinate of a query vector q
qc = q’ * U * pinv(S);
% The vector qc includes the co-ordinate of the query vector q; The matrix pinv(S)
contains reciprocals of nonzeros singular values (an pseudoinverse); The symbol’
denotes the transpose superscript.

3. Compute the similarity coefficients between the co-ordinates of the query
vector and images.
for i = 1:n % Loop over all images
sim(i)=(qc*V(i,:)’)/(norm(qc)*norm(V(i,:)));
end;
% Compute the similarity coefficient for i-th image; V (i, :) denotes the i-th row
of V .

The procedure lsi returns to a user the vector of similarity coefficients sim. The i-th
element of the vector sim contains a value which indicate a “measure” of a semantic
similarity between the i-th document and the query document. The increasing value
of the similarity coefficient indicates the increasing semantic similarity.

24.3.2 LSI1—The First Enhancement of the LSI Implementation

In this chapter, we will remind the well-known fact how to express matrices S and
V without the SVD. Of course, there is an efficient SVD iterative algorithm based
on Lanczos algorithm [14], but the SVD of a large document matrix remains still
time-expensive.

Let us assume the well-known relationship between the singular value decom-
position of the matrix A and the symmetric eigenproblem of the symmetric square
matrices AT A:

A = U SV T (24.2)

AT = (U SV T )T = V ST U T (24.3)

AT A = V ST (U T U )SV T = V ST SV T (24.4)

Furthermore, let us assume the SVD decomposition (24.1) again. Because of the fact
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that the matrix V is orthogonal, the following matrix identity holds:

AV = U S. (24.5)

Finally, we can express the matrix U in the following way:

AV S+ ≈ U (24.6)

Here the symbol S+ denotes the Moore–Penrose pseudoinverse (pinv). Let us accept
that the diagonal matrix S contains only strictly positive singular values for real
cases; The singular values less than tol ≈ 0 are cut off by the Matlab eigs(A’*A,
k) command, since the number of computed singular values k � n for real problems.

Following these observations, the SVD-free Latent Semantic Indexing procedure
can be written by the following way.

LSI1 [The SVD-free LSI, Version 1]
function sim = lsi1(A,q,k)

% Input:

% A ... the m × n matrix

% q ... the query vector

% k ... Compute k largest singular values and

vectors; k ≤ n
% Output:

% sim ... the vector of similarity coefficients

[m,n] = size(A);

1. Compute the co-ordinates of all images in the k-dimensional space by the
SVD-free approach.
[V,S2] = eigs(A’*A,k);
% Compute the k largest eigenvalues and eigenvectors of AT A to obtain V and S2

without SVD.
S = sqrt(S2);
U = A * V * pinv(S);
% Compute S and U without SVD.

2. Compute the co-ordinate of the query vector q .
qc = q’ * U * pinv(S);

3. Compute the similarity coefficients between the co-ordinates of the query
vector and images.
for i = 1:n % Loop over all images
sim(i)=(qc*V(i,:)’)/(norm(qc)*norm(V(i,:)));
end;

Compared to the previous version of the LSI, we can see modifications in the first step
of the algorithm. The second and the third steps of the algorithm remain the same.
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24.3.3 LSI2—The Second Enhancement of LSI

Analyzing the LSI1 procedure deeply, we can see that the matrix U does not have to
be explicitly computed and stored in memory during the second step of the LSI. The
exploitation of this observation brings us the additional accelerating of the speed and
decreasing the memory requirements of the LSI:

LSI2 [The SVD-free LSI, Version 2]
function sim = lsi2(A,q,k)

% Input:

% A ... the m × n matrix

% q ... the query vector

% k ... Compute k largest singular values and

vectors; k ≤ n
% Output:

% sim ... the vector of similarity coefficients

[m,n] = size(A);

1. Compute the co-ordinates of all images in the k-dimensional space by the
SVD-free approach.
[V,S2] = eigs(A’*A,k);
S = sqrt(S2);
% Compute S and V without SVD.

2. Compute the co-ordinate of the query vector q without using the matrix U .
qc = (((q’ * A) * V) * pinv(S)) * pinv(S);

3. Compute the similarity coefficients between the co-ordinates of the query
vector and images.
for i = 1:n % Loop over all images
sim(i)=(qc*V(i,:)’)/(norm(qc)*norm(V(i,:)));
end;

Compared to the LSI1, we can see modifications in the first step and in the second
step of the algorithm. The presented choice of parenthesis in the second step of LSI2
is the key implementation detail that extremely influences the efficiency of the LSI
speed.

24.4 Iris Recognition Experiments

The iris is scanned by TOPCON optical device connected to the CCD Sony camera.
The acquired digitized image is RGB of size 576 × 768 pixels [15]. Only the red (R)
component of the RGB image participates in our experiments. The reason is that the
recognition based on the red component appears to be more reliable than recognition
based on green (G) or blue (B) components or grayscale images. It is in accord with
the study of Daugman [4], where near-infrared wavelengths are used.
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Table 24.1. Iris recognition using the SVD-free Latent

Semantic Indexing method; Properties of the document

matrix (up) and LSI processing parameters (down) for

Query1 and Query2.

Properties of the document matrix A

Number of keywords: 576 × 768 = 442, 368

Number of documents: 24

Size in memory: 81 MB

The SVD-Free LSI processing parameters

Dim. of the original space 24

Dim. of the reduced space (k) 10

Time for AT A operation 3.38 secs.

Results of the eigensolver 0.26 secs.

The total time 3.64 secs.

24.4.1 The Small-Size Database Query

The testing database contains 24 images: 3 images of the left eye and 3 images of
the right eye from 4 persons. The collection of images required 81 MB of RAM.
The images were opened using the Matlab (tm) command imread. The queries were
represented as images from the collection. We used the LSI2 algorithm for image
retrieval in all cases.

For example, the name “001L3.tif” implies that the left iris of Person No.1, the
series 3 is assumed. The most time consuming part of LSI was multiplying of matrices
AT ×A. It takes 3.38 s on a Pentium Celeron 2.4 GHz with 256 MB RAM running
MS Windows XP. The computation of the partial eigenproblem by the Matlab com-
mand eigs() takes only 0.26 s (see Table 24.1).

In the current computer implementation of the Latent Semantic Indexing method,
no preprocessing of images and/or a priori information is assumed. However, the
numerical experiments presented here indicate quite optimistic availability of the
proposed algorithm for automated iris recognition.

24.4.1.1 Query1

All results are sorted out by the similarity coefficient. To achieve lucid results, only 16
of the most significant images are presented. In all cases, the remaining eight images
with the negligible similarity coefficient were removed from the presentation.

When the left iris of Person No.2, the series 1, is assumed as the query im-
age (002L1.tif), the most similar image is of course the query image itself with the
similarity coefficient 1 (see Fig. 24.5). The subsequent image is 002L2.tif with the
similarity coefficient 0.8472. The images 002P3.tif, 002L3.tif and 002P2.tif follow.
Analyzing results, we can see that these four most similar images are connected with
Person No. 2.

24.4.1.2 Query2

When the right iris of Person No.2, the series 1, is assumed as the query image
(002P1.tif), the two most similar images are related to Person No.2, 002P2.tif and
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Fig. 24.5. Image retrieval results related to the query image 002L1.tif (Query1).

002P3.tif (see Fig. 24.6). The image 001L3.tif, which is connected to Person No.1,
follow. But two subsequent images 002L3.tif and 002L2.tif are again relative to Person
No.2.

24.4.2 The Large-Scale Database Query

Statistically significant numbers of the similarity coefficients for compared “the same”
and “different” irides calculated for a database enable to quantify the probability of
incorrect iris recognition for the method. For this purpose, a database containing 384
images (3 images of the left eye and 3 images of the right eye taken at different times
from 64 persons) was used [15].

The large database query on the same irides was performed by 3 × 128 compar-
isons (the maximum possible number of combination of the same irides). Similarly,
the test of different irides was made as 72,576 comparisons of irides from different
persons.

Figure 24.7 shows the order of steps of the recognition process schematically. The
image is acquired and digitized. The positions of the iris boundaries are localized in
the image and approximated by concentric circles. The inner circle encircles a pupil
and forms the inner boundary, and the outer circle encircles the iris and represents the
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Fig. 24.6. Image retrieval results related to the query image 002P1.tif (Query2).

outer boundary. The region of interest (in Figure 24.7 marked as several rectangles)
that participates in the recognition is chosen within the iris boundaries to avoid the
influence of eyelashes and the reflectance of the camera flash. Then the region of
interest of the template image of the iris is stored in the database together with the

Fig. 24.7. The process of the iris recognition for the large-scale iris recognition example.
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Table 24.2. The large-scale iris recognition example

using the SVD-free Latent Semantic Indexing method;

Properties of the document matrix (up) and LSI

processing parameters (down).

Properties of the document matrix A

Number of keywords: 52,488

Number of documents: 384

Size in memory: 157,464 Kbytes

The SVD-Free LSI processing parameters

Dim. of the original space 384

Dim. of the reduced space (k) 10

Time for AT A operation 13.906 s

Results of the eigensolver 4.843 s

The total time 18.749 s

information describing the iris geometrical properties (the diameter and the center).
Of course, the positions of the iris are usually different on the scanning device and
the images are mutually rotated and shifted. These differences are not treated in the
current simple implementation of the image preprocessing. The properties of the
document matrix and LSI processing parameters are summarized in Table 24.2.

24.4.3 Results of the Large-Scale Database Query

The quality of the recognition is usually quantified by two types of errors: The False
Reject Rate (FRR) and The False Accept Rate (FAR). The FRR represents the percent-
age of the authentic objects that were rejected. FAR represents the percentage of the
impostors that were accepted. FRR and FAR generally depend on the given similarity
coefficient threshold of ρ. The lower the threshold ρ the higher is the probability of
accepting the impostor.

Similarly, the higher the threshold ρ the higher is the probability of rejecting the
authentic object. The intersection of the “impostor” and the “authentic” distributions
gives the value of the threshold ρ = ρ0, where the sum FAR(ρ0) + FRR(ρ0) is mini-
mal. Such distributions obtained from the similarity coefficients through the database
are presented in the form of histograms in Figures 24.8 and 24.9. Analyses of the
intersection of the distributions gave the value of threshold ρ0 = 0.766 and the errors
FAR = 1.12%, FRR = 2.34% (see Figure 24.10).

Of course, the probability of incorrect iris recognition can be significantly reduced
by a preprocessing step including a proper geometrical alignment of any two compared
irides before the similarity coefficient is computed.

24.5 Conclusions

This article presents the SVD-free Latent Semantic Indexing method for an automatic
verification of persons by iris recognition. Although no special pre-processing of
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Fig. 24.8. The distribution of the similarity coefficient sim for the compared different irides

through the database. The big majority of comparing has the similarity coefficient close to 0.

This feature indicates the ability of the algorithm to properly recognize irides belonging to a
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Fig. 24.9. The distribution of the similarity coefficient sim for the same irides through the

database. The big majority of comparing has the similarity coefficient close to 1. This feature

indicates the ability of the algorithm to properly recognize irides belonging to the same person.
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Fig. 24.10. The Detection Error Trade-off curve (DET curve) was computed by using the

DET-Curve Plotting software [16].

images and/or a priori information is assumed, our numerical experiments indicate
ability of the proposed algorithm to solve the large-scale iris recognition problems.

Of course, the quality of irides images and proper localization influence the re-
sulting errors. We have found that in our case the errors were caused by an inaccurate
localization of images. The proper localization is a subject for future work.
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25. Mining Knowledge in Computer
Tomography Image Databases

Daniela Stan Raicu

Summary. This chapter presents our research results obtained for texture extraction, clas-

sification, segmentation, and retrieval of normal soft tissues in Computed Tomography (CT)

studies of the chest and abdomen. The texture extraction step consists of various texture meth-

ods applied to the collection of tissue data in order to derive a set of features characterizing

the best the visual perception of texture. The classification step involves different data mining

learning models used to automatically map similar texture features to the same type of tissues,

and produce a set of rules that can be used for automatic classification and annotation of un-

labelled image data. When the classification approach is applied at the local (pixel) level, it

can be used for automatic segmentation. Each pixel will receive a label through the classifi-

cation rules and connected pixels having the same labels will form a region or segment in the

corresponding image. This type of segmentation will have a significant impact on the current

research efforts for providing automatic context (i.e., that the cursor is hovering over “liver”

in CT images). The image retrieval step consists of the selection of the best similarity metric

and the best texture feature representation in order to retrieve the most similar images with the

organ query image. Since there is no similarity measure known to perform the best for the CT

modality, we compare eight metrics and three different feature representations, and show how

the selection of a similarity metric affects the texture-based retrieval. Furthermore, since our

work deals with normal tissues, the system proposed here can be considered as a first step for
supporting the clinical decision-making process.

25.1 Introduction

The human body is an extremely complex system. Images are by far the most efficient
way to obtain, interpret, and manage information about complex systems. Physicians
increasingly rely on images to understand the human body and to intervene in the
processes of human illness and injury. The use of images to manage information about
biologic and medical processes is certain to grow, not only in clinical medicine but
also in the biomedical imaging research efforts that support it [1].

Advances in biomedical imaging over the years have been driven principally by
the continuous evolution of imaging technologies. The ever-present radiographic film
that has been the basis of image management for almost 100 years is being displaced

487
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by new digital imaging modalities such as:

1. Computed tomography (CT)
2. Magnetic resonance (MR)
3. Nuclear medicine (NM)

(a) Emission computed tomography (ECT) with compounds releasing positrons
(positron emission tomography [PET])

(b) single photons (single photon emission computed tomography [SPECT])
4. Ultrasound (US)
5. Digital radiography (DF)
6. Computed radiography (CR) using storage phosphor imaging plates or film

digitizers
7. Digital angiography (DA)
8. MR spectroscopy (MRS)
9. Electron emission radiography (EMR).

The explosion of the medical imaging technologies has generated mountains of
data; depending on the size of the institution, a radiology department can perform be-
tween 100 and 5000 examinations daily, generating a myriad of images, patient data,
report text, findings, and recommendations [2]. Digital image management systems
are under development now to handle these images in digital form. These systems are
termed Picture Archiving and Communication Systems (PACS), and they are based
on the integration of different technologies that form a system for image acquisi-
tion, storage, transmission, processing, and display of images for their analysis and
further diagnosis. Availability of digital data within the PACS raises a possibility
of health care and research enhancements associated with manipulation, processing,
and handling of data by computers, that is a basis for computer-assisted radiology
development.

In general, radiology data are well organized but poorly structured, and structur-
ing these data prior to knowledge extraction is an essential first step in the successful
mining of radiological data [2]. Furthermore, when compared to text, radiology im-
ages are enormous in size and highly variable over time. Another challenge is that the
image data itself is contained within PACS systems that are in constant use and quite
difficult to mine for image data while in use as clinical systems. Therefore, image
processing and data mining techniques are necessary for structuring, classification,
and retrieval of image data. For instance, the development of Content-based Image
Retrieval (CBIR) systems and their integration into the PACs systems will have many
potential applications in three large domains: education, research, and diagnosis. In
the domain of education, a teacher could query for images with specific anatomical
regions in order to provide visual similar examples to students. Research can benefit
from the CBIR systems: by including visual features directly in medical studies, new
correlations between the visual nature of a case and its diagnosis or textual descrip-
tion can be found. Finally, the diagnostics will be the hardest but most important
application for image retrieval. For domains such as evidenced-based medicine or
case-based reasoning it is essential to supply relevant, similar cases for comparison
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based on special visual image features that model the visual detection of a medical
doctor.

Besides the technology push, the recent advances in the medical imaging have
also been driven by the concept of biologic/clinical pull [1]. For instance, in our days,
CT imaging is used extensively in radiation oncology as a feedback mechanism to
shape and guide external beams of radiation so that cancer treatments are optimized
in real time during delivery of the radiation. This is an exceptional development in
clinical medicine for designing plans for cancer and guiding the delivery of radiation.

The continuous evolution of imaging techniques, the accelerating advances in
computer technology, and the innovations in information networking set the stage for
major advances in medical image data mining and its contributions to health care.
This chapter presents the potential contributions of data mining and image processing
to the field of radiology; in particular, we discuss how computer-aided diagnosis
(CAD) systems can play a major and important role in early detection, diagnosis, and
computerized treatment planning in cancer radiation therapy.

25.2 Mining CT Data: Classification, Segmentation, and Retrieval

In this section, we present an overview of our research work and contributions to the
process of classification [3], segmentation [4], and retrieval [5] of normal tissues in
CT studies of the chest and of the abdomen.

25.2.1 Image Classification: Related Work

Tissue classification has been largely limited to specific pathologies, typically within
a single organ or tissue. Karkanis et al. [6] proposed a scheme that uses textural de-
scriptors based on second-order gray-level statistics and employs a multilayer feed
forward neural network to discriminate among normal and cancer regions in colono-
scopic images. Chabat et al. [7] proposed an automated technique for differentiation
between obstructive lung diseases using a supervised Bayesian classifier on the ba-
sis of statistical textural descriptors of thin-section CT images. Sluimer et al. [8]
also looked at the automatic differentiation of normal from abnormal lung tissue in
HRCT of the lungs and found the best classifier to be k-nearest neighbors when using
multiscale filter bank for texture analysis. Fortson et al. [9] applied several Gaussian
Maximum Likelihood classifiers to capture the large variety of tissues types inherent
to Scleroderma in HRCT of the lung as well. Cios et al. [10] proposed a semiauto-
matic procedure based on decision trees for analyzing SPECT images of a human
heart and classifying the images into several categories. Albrecht et al. presented in
[11] a pattern classification method that combines the classical perceptron algorithm
with simulated annealing in order to recognize focal liver tumors in CT images. Wolf
et al. [12] studied the hierarchical classification of brain tumors by CT-image Walsh
spectra.

Our work will provide texture extraction and classification of normal tissue across
a wide range of organs and tissues in CT scans. The texture extraction step will consist
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of various texture methods applied to the collection of tissue data in order to derive
a set of features (numerical descriptors) characterizing the best the visual perception
of texture. The classification step will involve different learning models that will
automatically map similar texture descriptors to the same type of tissues and thus
produce a dictionary of texture values for normal tissues in CT scans.

The automatic classification of normal tissues will contribute to the development
of new approaches for computerized treatment planning in cancer radiation therapy.
Before radiation therapy begins, it is important to precisely locate the cancer, but also
accurately determine normal areas of the body through which radiation will pass such
that the dose of radiation the cancer and nearby normal tissues will be exposed to
will be accurately identified. This will enable radiation oncologists to significantly
reduce side effects while improving the ability to deliver a curative radiation dose to
cancer-containing areas and minimizing the radiation dose to normal tissue.

25.2.2 Image Segmentation: Related Work

The previous approach for normal tissue classification when applied at the local
(pixel) level can be used for automatic segmentation. Each pixel will receive a label
through the classification rules and connected pixels having the same labels will form
a region or segment in the corresponding image. This type of segmentation will have a
significant impact on the current research efforts for providing automatic context (i.e.,
that the cursor is hovering over “liver” in CT images). Accurate tissue segmentation
and classification of normal CT structures will allow the radiologist to invoke specific
tools named context sensitive tools during the interpretation process. These tools may
represent further image processing and decision support tools or may invoke tissue
specific reporting and annotation tools that should speed radiologic reporting while
at the same time promote the acquisition of structured information about the images.
In the absence of automatic tissue segmentation and classification, the navigation
of structured reporting hierarchies presents too much of a delay to be practicably
implemented.

There are a large number of texture-based segmentation algorithms in the lit-
erature. Texture segmentation usually involves the combination of texture feature
extraction techniques with a suitable segmentation algorithm. Among the most pop-
ular feature extraction techniques used for texture segmentation are Gabor filters and
wavelets transforms [13–15]. Among the most commonly used segmentation algo-
rithms based on these features are clustering techniques [16, 17], region growing, and
split-and-merge [18, 19].

Segmentation using the traditional techniques previously mentioned requires con-
siderable amounts of expert interactive guidance. In the medical imaging field, de-
formable models are commonly applied because of their capability to capture the
irregular shapes and shape deformations found in anatomical structures. The de-
formable model that has attracted the most attention to date is popularly known as
“snakes” [20], and it has been used for different applications such as the segmentation
of the heart from cardiac imagery, of neural tissue textures, and of the bone and carti-
lage in clinical knee magnetic resonance imaging (MRI). However, the application of
snakes and other similar deformable contour models to extract regions of interest is



P1: OTE/SPH P2: OTE

SVNY295-Petrushin August 16, 2006 20:53

25. Mining Knowledge in Computer Tomography Image Databases 491

not without limitations. One of the limitations is that snakes were designed as interac-
tive (semiautomatic) models. To increase the speed, accuracy, and consistency of the
segmentation, automatic segmentation is a desirable, albeit very difficult, long-term
goal.

Our proposed approach for segmentation does not require any selection of initial
points in order to perform the organ segmentation; moreover, it can be used as an
automated first-pass segmentation that can be followed by the snake algorithm.

25.2.3 Image Retrieval: Related Work

In medicine to date, virtually all Picture Archiving and Communications Systems
(PACS) retrieve images simply by textual indices based on patient name, technique,
or some-observer-coded text of diagnostic findings [21]. Fields of text tags, such as
patient demographics, diagnostic codes (e.g., ICD-9, American College of Radiology
diagnostic codes), image view-plane (e.g., saggital, coronal, etc.) and so on usually
are the first handles on this process. This textual approach, however, may suffer from
considerable observer variability, high cost of manual classification and manipulation
of images by medical experts, and failure to fully account for quantitative relationships
of medically relevant structures within an image that are visible to a trained observer
but not codable in conventional database terms.

In the radiology domain, a study [22] was performed to measure the level of inter-
and intraobserver agreement and to evaluate the causes of variability in radiologists’
descriptions and assessments of sonograms of solid breast masses. The findings of
the study showed the lack of uniformity among observers’ use of descriptive terms
that produced inconsistent diagnoses even though the appearance of masses was
described accordingly to a lexicon that was proposed in an earlier benchmark study.
Since radiologists themselves rely on visual texture to detect and describe breast
lesions on ultrasound images, a Content-Based Image Retrieval (CBIR) system using
automatically extracted quantitative texture features could have been used to address
this established clinical weakness of the diagnostic process and also complement the
radiologists’ perceptive abilities.

According to Muller et al. [23], only six research projects currently aim at creat-
ing CBIR for general medical applications, namely: I2C [24], COBRA [25], IRMA
[26, 27], KMeD [28], MedGIFT [29], and Image Engine [30]. Most applications for
CBIR focus on the analysis of a specific anatomical structure from images produced
in radiology, pathology, and cardiology departments. Glatard et al. [31] introduced
a CBIR system that uses Gabor filters [32] extracted from segmented cardiac MRI
to perform clinically relevant queries on large image databases that do not require
user supervision. Mueller et al. [23] compares changes in texture analysis with Gabor
filters and the performance of variations in feature space in relation to color (grey
level) quantization. Brodley et al. [33] introduced a CBIR system for the retrieval
of CT lung images; their proposed system, ASSERT, uses several features (such as
co-occurrence texture features, Fourier descriptors, and moments), and relies on ex-
pert interaction with the system in addition to various machine learning and computer
vision techniques. Zheng et al. [34] designed and analyzed a CBIR system for pathol-
ogy, using four types of image features and the dot product as a similarity metric.
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Wei et al. [35] proposed a CBIR system for the mammography imaging modality
using the co-occurrence texture signatures as global features.

In our proposed approach, we use both global-level [36] and local-level co-
occurrence texture features to retrieve normal anatomical regions produced by CT
as the imaging modality. Since there is no similarity measure known to perform the
best for the CT modality, we compare eight metrics and three different feature repre-
sentations, and show how the selection of a similarity metric affects the texture-based
retrieval. Furthermore, since our work deals with normal tissues, the system proposed
here can be considered as a first step for supporting the clinical decision-making
process. Same as the normal workflow in medicine, in order to find out if a new case
is normal (nonpathological) or not, the new case will be compared with the existing
normal cases from a database doing dissimilarity retrieval as opposed to similarity
retrieval. The distance to normality of the new case along with the knowledge of
the medical specialist will determine the placement of the case either in the nor-
mal database or in a pathological database; for the later situation, more specialized
computer-aided diagnosis tools or image retrieval systems focusing on the specific
pathology can be applied further for evaluation and clinical decision making.

25.3 Materials and Methods

25.3.1 Image Database

25.3.1.1 Data Acquisition

Our preliminary results are based on data extracted from two normal CT studies
from Northwestern Memorial Hospital (NMH) PACS. The data consist of multiple,
serial, axial CT images derived from helical, multidetector CT abdominal, and chest
acquisitions using a HiSpeed CT/i scanner (GE Medical Systems, Milwaukee, WI);
the imaging protocol parameters are: 120 kVp, 60-120 mA (depending on body size),
480 mm for the field-of-view (FOV) and 0.9375 for the voxel size. The images were
taken at the same time for each of the patients, leading to two time points in the
data; the patient positioning in the images was FFS (Feet–First–Supine), one of the
patient-space coordinate system conventions used in DICOM (Digital Imaging and
Communications in Medicine) standard format. The images were transferred via
Ethernet to a nearby computer workstation in DICOM format of size 512 by 512
and having 12-bit gray level resolution. An automated software agent (DICOM Valet,
ETIAM, Rennes, France) attached to the DICOM Storage Service Class Provider
(WinSCP, ETIAM, Rennes, France) performed de-identification according to DICOM
Supplement 55.

25.3.1.2 Image Segmentation for the Global Tissue Classification
and Retrieval Tasks

Using the Active Contour Models (ACM) algorithm [37], we segmented five organs
from 344 2-D axial slices: heart and great vessels, liver, renal and splenic parenchyma,
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and backbone. We used the ACM segmentation algorithm because it allowed us
segment regions with complex shapes, and once several initial points were selected
on the boundary, the algorithm calculated automatically the boundary of each of the
region of interest.

The main steps involved in our proposed approaches for classification, segmen-
tation, and retrieval are:

1. For each segmented region of interest from the image database, we calculate a set
of 10 Haralick texture features at both global and pixel-level; therefore, each organ
or pixel is represented as a vector with 10 elements that will be further used for
comparing the similarity among the images/organs.

2. Once the features are calculated, they can be represented as either a mean-based
vector, binned histogram, or texture signature depending on the level of granularity
considered. Furthermore, a preprocessing step is applied: the features are normal-
ized such that the differences in their scales do not influence the similarity results
or the classification results. Then, the normalized texture features are used for the
three proposed tasks.

3. In the case of the classification task, a decision tree classification model is used
to derive a set of classification rules at both the pixel and the global levels. The
classification results are evaluated with respect to four performance metrics: sensi-
tivity, specificity, precision, and accuracy. The global rules can be used further for
organ tissue classification and annotation while the pixel (local) rules can be used
for the CT image segmentation task. Pixels with the same classification labels and
being adjacent will form connected components and thus, the regions of interest
within the corresponding CT images. In the case of retrieval, eight measures are
calculated between the query and all the other images from the database. As a
response to a specific query, the system will display the most similar images with
the query image. The retrieval performance is evaluated using the precision and
recall metrics and each image is considered a query image; therefore, a total of
344 queries are performed and evaluated using the two performance metrics.

25.3.2 Texture Features

In medical image processing, texture is especially important, because it is difficult
to classify human body organ tissues using shape or gray-level information. This
is because of the uncertainty introduced by the unlimited variability in organ shape
distortion and the potential absolute gray-level variability due to the imaging device.
While gray levels purely describe pointwise properties of images, texture uses these
gray levels to derive some notion of spatial distribution of tonal variations, surface
orientation, and scenic depth. Furthermore, contrary to the discrimination of morpho-
logic information (shape, size), there is evidence that the human visual system has
difficulties in the discrimination of textural information that is related to higher order
statistics or spectral properties in an image. Consequently, texture analysis can poten-
tially augment the visual skills of the radiologist by extracting features that may be
relevant to the diagnostic problem but they are not necessary visually extractable [38].
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Several approaches have been applied toward the analysis and characterization
of texture within medical images including fractal dimension, run-length encoding,
discrete wavelet transform, and co-occurrence matrices. While there has not been any
conclusive study to prove the superiority of one method over the other methods of
capturing texture, we choose to use the Haralick co-occurrence [36] method because
it is a well-known, established method that has been proven to correlate well with
what experts generally look for in texture features. Also, it has been used successfully
to produce good results in classification studies of normal tissues in CT images of
chest and abdomen [4].

The Haralick co-occurrence texture model and its texture descriptors capture the
spatial dependence of gray-level values and texture structures within an image [36].
There are many statistics that can be used; however, because of the redundancy and
the high correlation in these statistics, only 10 statistics are advocated for feature
representation in this application. We are using the following 10 descriptors (given by
Equations (25.1) through (25.10), where P is the normalized co-occurrence matrix,
(i, j) is the pair of gray level intensities i and j , and M by N is the size of the
co-occurrence matrix):

Entropy = −
M∑
i

N∑
j

P[i, j] log P[i, j] (25.1)

Energy =
M∑
i

N∑
j

P2[i, j] (25.2)

Contrast =
M∑
i

N∑
j

(i − j)2 P[i, j] (25.3)

Homogeneity =
M∑
i

N∑
j

P[i, j]

1 + |i − j | (25.4)

SumMean = 1

2

M∑
i

N∑
j

(i ∗ P[i, j] + j ∗ P[i, j]) (25.5)

Variance = 1

2

M∑
i

N∑
j

((i − μ)2 P[i, j] + ( j − μ)2 P[i, j]) (25.6)

Maximum Probability = Max
M,N

i, j
P[i, j] (25.7)

Inverse Difference Moment =
M∑
i

N∑
j

P[i. j]

|i − j |k (25.8)

Cluster Tendency =
M∑
i

N∑
j

(i + j − 2μ)k P[i, j] (25.9)

Correlation =
M∑
i

N∑
j

(i − μ)( j − μ)P[i. j]

σ 2
(25.10)
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These descriptors are calculated at both local (pixel) and global (organ) levels,
depending on the tasks to be used for and the fundamental structures present in the
images. Pixel-level properties are calculated to be able to isolate regional properties
within an image, while global-level features summarize the whole image and represent
it as one entity.

25.3.2.1 Global-Level Feature Representation

To compute global-level features, the normalized co-occurrence matrices are cal-
culated in four directions (0◦, 45◦, 90◦, and 135◦) and five displacements (d =
1, 2, 3, 4, 5) generating 20 matrices per segmented image. These rotations and
displacements are only in-plane since the images being considered are only 2-
dimensional axial slices. The 10 Haralick features are calculated for each of the 20
matrices and then, the 20 values are averaged and recorded as a mean-based feature
vector for the corresponding segmented image [39].

25.3.2.2 Pixel-Level Feature Representation

To compute pixel-level features, a small neighborhood is considered for each pixel
within the segmented region. The size of the neighborhood has to be large enough
in order to get enough samples to produce statistically significant texture features at
the pixel level and small enough in order to capture the local property of the texture
and not to introduce multiple textures within the pixel neighborhood. Therefore, we
choose a neighborhood of size 5 by 5 as a trade-off between the level of locality
and the statistical significance of the results; the choice of this size is also partially
motivated by the good classification accuracy obtained for the classification of pixels
and regions of soft tissues when using texture features calculated within a 5 × 5
neighborhood [4].

Once the neighborhood size is determined, a co-occurrence matrix is calculated for
each neighborhood within the corresponding region. While co-occurrence matrices
are normally defined for a fixed distance and direction when calculated at the global
level, for the pixel-level approach, we do not calculate the co-occurrence along fixed
directions and displacements. Instead we consider all pixel pairs within that neighbor-
hood such that there will be enough samples (pairs) for calculating the co-occurrence
matrix in order to produce statistically significant results. Thus, our implementation
produces a single co-occurrence matrix for each pixel rather than for each choice of
distance and direction. Then, for each co-occurrence matrix (each pixel), we calcu-
late 10 Haralick features which can be related to specific characteristics in the image.
Figure 25.1(b)–(d) illustrates the image representations of different pixel-level texture
features for the original CT image from Figure 25.1(a).

From the pixel-level data, we derive different representations for the texture co-
occurrence features: (1) mean vector-based data, (2) binned histogram data, and
(3) texture signatures. These vectors are the possible representations of the texture
features at the pixel-level and they will be evaluated to study the effect of the feature
space on the choice of the similarity metric and thus, on the retrieval results.
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(a) Original CT

 
(b) Energy

 
(c) Cluster tendency 

 
(d) Inverse difference moment

Fig. 25.1. Image representation for the pixel-level texture features.

The mean vector-based data representation consists of the average of the nor-
malized pixel-level data for each region such that the texture representation of that
corresponding region is a vector instead of a set of vectors given by the pixels’ vector
representations within that region.

The binned histogram data representation consists of texture values grouped
within equal-width bins. The number of bins and their placement are important pa-
rameters as they determine how crudely, or how well, the underlying probability
distribution (obtained by quantizing the responses into bins and normalizing such
that the sum over all bins is unity) is: too many number of bins will overfit the data
and introduce noise while less number of bins will make the binning crude. In our
experimental results, a number of 256 equal-size bins produced the best results for
this representation.

The texture signature representation is the clustered representation of the normal-
ized local level data obtained using a k–d tree clustering algorithm [40]. The k–d tree
clustering algorithm is chosen because (1) it does not require any assumptions about
the data set; (2) it is computational efficient; and (3) it allows clusters of unequal size
and thus, it will eliminate the limitation of the binned histogram representation. The
k–d tree algorithm iteratively divides the data space using predefined stopping criteria.
In our approach, we implement two stopping criteria: the first criterion was to estab-
lish a minimum variance within the subset to be divided to prevent creating redundant
clusters and oversplitting; the second stopping criterion is used to enforce a minimum
cluster size as a percentage of the original data set and to maintain a significant size
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within the clusters and to prevent outliers from uncontrollably growing the tree. By
varying both the variance and minimum cluster size, different texture signatures are
obtained. In our experimental results obtained using the directed Hausdorff distance,
a variance equal to 10% and a cluster size equal to 20% of the parent cluster’s variance
and size, respectively, produced the best retrieval results for this representation.

25.3.3 Classification Model

25.3.3.1 Decision Tree Classifier

There are many classifiers that can be used to discriminate among the organ tissue
classes in the feature space. In our preliminary work, we evaluated a decision tree
classifier because (1) it does not make any assumptions of the distribution of the data;
(2) it has a relatively faster learning speed than other classification methods, while
still producing classification accuracy comparable with those methods; and (3) it has
a good ability to generate decision rules that can be easily understood, interpreted,
and used to annotate different tissues in future CT scans. The implementation of our
decision tree was based on the Classification and Regression Trees (C&RT) approach
and used the SPSS Answer Tree 3.0 software. From the decision tree, a set of the most
important decision rules was generated to be used for classification of the regions,
and to derive the most relevant texture descriptors for specific organs. To evaluate the
performance of the classifier, we calculated four metrics on the regions of interest in
the testing set: sensitivity, specificity, precision, and accuracy.

The C&RT tree is constructed by splitting subsets of the data set using all de-
scriptors as predictors to create two child nodes repeatedly, beginning with the entire
data set. The best predictor is chosen using the Gini impurity index, which works by
choosing a split at each node such that each child node is more pure than its parent
node:

Gini(S) = 1 −
c∑

i=1

p2
i ,

where S is the data set to be split, c is the number of classes and pi is the probability
of class i within the data set S. A total pure node is a node for which the Gini index
is equal to zero. The goal is to produce subsets of the data that are as homogeneous
as possible (producing pure nodes in the tree) with respect to the class label. For each
split, each predictive descriptor is evaluated to find the best cut point (our descriptors
being continuous predictors) based on improvement score or reduction in impurity.
Then, the predictors are compared, and the predictor with the best improvement is
selected for the split. The process repeats recursively until one of the stopping rules is
triggered: (1) the maximum tree depth, d , has been reached; (2) there is no significant
predictive descriptor left to split the node; (3) the number of cases in the terminal node
is less than the minimum number, np, of cases for parent nodes; (4) if the terminal
node were to split, the number of cases in one or more child nodes would be less
than the minimum number, nc, of cases for child nodes; and (5) minimum change in
impurity, imp, is reached. Depending on the values set for the parameters (d, np, nc,
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imp), a different tree will be obtained; the “best” tree will be chosen to be the one
with the highest classification accuracy.

25.3.3.2 Evaluation Metrics

In order to select the “best” parent and “best” child, and thus the “best” decision
tree for our data, the following four performance metrics have to be maximized: (1)
sensitivity (the ratio between true positives and total positives), (2) specificity (the
ratio between true negatives and total negatives), (3) precision (the ratio between true
positives, and the summation of true positives and false positives), and (4) accuracy
(the ratio between the summation of the true positives and negatives and the total
number of samples). For example, if we are interested in measuring the classification
performance for “heart and great vessels” class, a true positive is a tissue region
classified as “heart and great vessels” when the original class label (the label given by
a human expert) is “heart and great vessels”; a true negative is a tissue region correctly
classified as “non-heart and great vessels,” a false positive is a tissue region classified
as “heart and great vessels” when it is actually a “non-heart and great vessels,” total
positives is the total number of “heart and great vessels,” and total negatives is the
total number of “non-heart and great vessels.” The same definitions apply for the
other tissue types.

25.3.3.3 Decision Rules

The decision tree can be generated at both local and global feature levels. At the
local level, its decision rules can be used to classify each pixel within the CT images.
Pixels with the same classification labels and being adjacent will form connected
components and thus, produce the segmentation of the regions of interest within the
corresponding CT images.

Once the optimal decision tree has been constructed, it is a simple matter to
convert it into an equivalent set of decision rules. Converting a decision tree to rules
has two main advantages: (1) converting to rules removes the distinction between
texture features that occur near the root of the tree and those that occur near the leaves
and (2) converting to rules improves readability since rules are often easier for people
to understand.

25.3.4 Similarity Measures and Performance Evaluation

25.3.4.1 Similarity Metrics Definitions

Similarity metrics describe how similar two images (organs in our case) are. There
are many similarity measures proposed in the context of CBIR and the choice of
a similarity metric is dependent on both the feature space representation and its
property to capture the visual human perception of similarity. Rubner et al. define
four categories of similarity measures to calculate the similarity for histogram-based
data [41].
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Heuristic Distance Metrics: (1) Minkowski 1-distance, dLr (city block distance
or L1 norm) (Equation (25.11)), (2) weighted-mean-variance, dwmv (uses the means
and standard deviations for each of the considered features) (Equation (25.12)):

dLr (H, K ) =
( ∑

i

|hi − ki |r
) 1

r

(25.11)

dwmv(H, K ) =
∑

i

|μi (H ) − μi (K )|
|σ (μi )| + |σi (H ) − σi (K )|

|σ (σi )| (25.12)

Nonparametric Test Statistics: (1) Cramer-von Mises, dCvM (similar to the squared
Euclidean distance but calculated between the distributions and as the maximal dis-
crepancy between the cumulative distributions) (Equation (25.13)); (2) Kolmogorov–
Smirnov distance, dKS (used for unbinned data distributions and it is invariant to ar-
bitrary monotonic transformations) (Equation (25.14)), and (3) Chi-square statistics,
dχ2 (used to distinguish whether distributions of the descriptors differ from each
other) (Equation (25.15)):

dCvM (H, K ) =
∑

i

∑
j

(Fi ( j ; H ) − Fi ( j ; K ))2 (25.13)

dK S(H, K ) =
∑

i

max
j

(|Fi ( j ; H ) − Fi ( j ; K )|) (25.14)

dχ2 (H, K ) =
∑

i

(hi − mi )
2

mi
, mi = hi + ki

2
(25.15)

Information Theory Divergences: (1) Jeffrey–Divergence, dJD(used to compute
the distance between class distributions of two values of the same feature) (Equation
(25.16)); and 2) Kullback-Leibler (KL) divergence, dKL (Equation (25.17)):

dJD(H, K ) =
∑

i

∑
j

(
f ( j ; H ) log

f ( j ; H )

m j
+ f ( j ; K ) log

f ( j ; K )

m j

)
(25.16)

where m j = f ( j ;H )+ f ( j ;K )
2

dK L (H, K ) =
∑

i

f ( j ; H )log
f ( j ; H )

f ( j ; K )
(25.17)

Ground distances: (1) Quadratic Form (QF), dQF, (Equation (25.18)), and (2)
Earth Mover’s Distance (EMD), dEMD : (Equation (25.19))

dQF(H, K ) =
√

( fH− fK )T A( fH− fK ) (25.18)

dE M D(H, K ) =
∑

i, j gi j di j∑
i, j gi j

(25.19)

H represents the query image that can be thought as of a point in a 10-dimensional
space, where the value along each dimension (each of the 10 Haralick texture fea-
tures) is given by hi ; similarly,K represents a given image from the database and
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ki represents its feature value corresponding to the i th dimension in the feature space.
Furthermore, fH and fK are vectors that list all entries in f (i ; H ) and f (i ; K ), A de-
notes the similarity matrix, gi j is the optimal flow between two distributions and di j is
the similarity between bin i and j .

We evaluate all similarity measures from the first and second categories and the
Jeffrey–Divergence from the third category within the context of both feature repre-
sentation requirements for each of the metrics and their retrieval performance. Jeffrey–
Divergence (dJ D) is an information theoretically motivated similarity measure just
like Kullback–Leibler [41] and Mutual Information [42]. The latter two are not im-
plemented in this work, but the former is implemented and will serve to represent the
performance of similarity measures of this class. Since the two ground distances have
high computational complexity and we are interested in evaluating CBIR systems for
the medical domain where the retrieval of similar images should be performed very
fast and on-the-fly, we do not consider them in the current implementation. In addition
to the above metrics, two others are implemented as required by the different tex-
ture feature representations: Euclidean distance dA (Equation (25.20)) and Hausdorff
distance, dHD (used for texture signature representation) (Equation (25.21)):

dA(H, K ) =
∑

i

√
(hi − ki )

2 (25.20)

dHD(H, K ) = max
h∈H

(min
k∈K

(||h − k||)) (25.21)

For more details on the properties of these similarity metrics, we refer the reader
to the work of Rubner et al. [41].

25.3.4.2 Performance Metrics

For medical image retrieval systems, the evaluation issue is almost nonexistent in most
of the papers and those systems that do perform evaluation often use only screenshots
of example results to queries. A single example result does not reveal a great deal
about the real performance of the system and is not objective as the best possible
query can be chosen arbitrarily by the authors.

We evaluate the system’s retrieval results using precision and recall as performance
metrics, as defined by Equations (25.22) and (25.23):

Precision = #of relevant retrieved images

total#of retrieved images
(25.22)

Recall = #of relevant retrieved images

total #of relevant images
(25.23)

Each image is considered a query image; therefore, a total of 344 queries are
performed and evaluated using the two performance metrics. The k number of images
that are the most similar with the query image is another parameter to be considered
in evaluating the two metrics with respect to retrieval.

As a note, the current retrieval system is not required to rank the retrieved organs
based on the variability that exists within organs of the same anatomical regions.
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Table 25.1. Classification performance on individual tissues of the training set

(number of parents = 28, number of children = 5, cross-validation fold = 10)

Organ Sensitivity Specificity Precision Accuracy

Backbone 99.7% 99.5% 99.2% 99.6%

Liver 80.0% 96.9% 83.8% 94.1%

Heart 84.6% 98.5% 90.6% 96.5%

Renal 92.7% 97.9% 89.7% 97.1%

Splenic parenchyma 79.5% 96.1% 73.6% 94.1%

Therefore, a retrieved image is “relevant” if belongs to the same anatomical region
as the query. However, for the application of this type of system in a more specific
discriminatory manner (e.g., to track disease progression, organ distortion, size), it
would be useful to rank retrieved images from the same anatomical region.

25.4 Experimental Results and Their Interpretation

25.4.1 Tissue Classification Results

To produce and validate the best decision tree, the 344 segmented images were divided
into 4 quadrants producing 1360 images (some quadrants did not contain any tissue
so they were ignored) that were used for the training set (66% of the data) and the
testing set (34%). The training set was used to create the decision trees based on
a 10-fold cross-validation technique. Each of the produced decision trees was then
validated on the testing data and the decision tree for which the four performance
metrics were maximum was chosen as the optimal tree. The optimal tree resulted in
a tree with 41 nodes, 8 levels of depth, and 21 leaves producing 21 decision rules for
the classification process.

For the training set, the overall performance (calculated as the weighted average
per organ) for all four metrics was better than 89%. For the testing set, the overall
performance for sensitivity and precision was above 80% and the performance for
specificity and accuracy was above 90%.

Tables 25.1 and 25.2 show the four performance metrics for the training and
testing data per organ, respectively; Figure 25.2 shows how the rules are applied to
annotate unlabelled tissues in CT images.

The lowest sensitivity and precision values were recorded for spleen that was
misclassified as liver most of the time; this indicates that either the used texture

Table 25.2. Classification performance on individual tissues of the testing set

(number of parents = 28, number of children = 5, cross-validation fold = 10)

Organ Sensitivity Specificity Precision Accuracy

Backbone 100% 97.6% 96.8% 98.6%

Liver 73.8% 95.9% 76.2% 92.5%

Heart 73.6% 97.2% 84.1% 93.2%

Renal 86.2% 97.8% 87.5% 96.0%

Splenic parenchyma 70.5% 95.1% 62.0% 92.5%
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Fig. 25.2. An example of heart classification in our proposed approach with a probability

of 0.862.

descriptors did not have enough discrimination power or the decision tree classifier
was not able to produce the optimal tree with respect to these two types of tissues.
Another possible explanation for the misclassification of the liver and spleen comes
from the similarity of the gray levels of these tissues introduced by the linear binning.
It is worth mentioning here that low results for the classification of liver and spleen
were obtained by Koss et al. [45] when they applied a neural network to segment a
CT image into seven and eight classes (tissues) of interest using a pixel-based co-
occurrence texture model. Therefore, as future work, we plan to investigate other
binning strategies, incorporate additional texture models into our texture analysis,
and apply other classification techniques in addition to the decision tree one.

The classifier model obtained using decision tree approach generated a set of 21
rules: 3 rules for the heart, 3 rules for the kidneys, 5 rules for the spleen, 8 rules for the
liver, and 2 rules for the backbone. The fact that there are multiple rules to describe
a single organ suggests that single classes (organs) may have multiple subclasses
(tissues).

25.4.2 Tissue Segmentation Results

To generate the decision tree for the pixel data, we manually selected patches of pure
organ tissues from three consecutive slices. The number of patches and their sizes
were chosen such that we have an equal number of pixels for each organ of interest.
The pixels received the class label of the patch to which they belonged to. Since we
want to use the decision tree for the segmentation of entire CT images, additional
patches (not containing the organs of interest) were selected and their pixels were
labeled as “unknown.” We ended up selecting around 1500 pixels for each of the
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four organs and the “unknown” class. Furthermore, the training set was used to build
the classifier, while the second set was used to estimate the accuracy of the classifier
when used for tissue/organ annotation of previously unseen pixels.

To select the optimal decision tree (DT) for our data sample, we varied the number
of observations (pixels) per node from 25 (number of pixels in a neighborhood) to
1000 and each time we estimated the overall accuracy of the classifier (number of
pixels correctly classified divided by the total number of pixels); on the basis of
the accuracy of the testing set, the optimal tree was selected. The empirically found
optimal parameter for the “observations per parent” was in the range from 274 to
289; any of those values would result in the combined accuracy of the testing set of
over 85%. We decided to use a tree with the “observations per parent” of 289 since it
resulted in the smallest and most efficient tree.

After we generated and tested the decision tree on the sample data, we applied
the tree on several consecutive entire slices to segment the organs of interest. We
noticed that the unknown class, the kidneys, and the bones were accurately classified
while spleen and liver were very often misclassified (liver pixels were classified as
spleen and vice versa). To improve the segmentation, either a median filter or spatial
information (such as liver is always in the anatomical left-hand side of the abdomen,
and the backbone can be used as a point of reference to find the orientation of the CT
scan) can be used as a postprocessing step. For visualization purposes, Figure 25.3 (c)

Fig. 25.3. Visual representation of classification image, snake comparison, and median filtered

image (5-by-5 filter)
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and (d) shows the pixel-level classification image before and after postprocessing with
a median filter; different colors represent the organs of interest (red—liver, green—
kidney, white—backbone, blue—spleen), gray represents the unknown class (organs
that were not of interest for this study) and black is the region outside the body that
has not been included in the analysis.

25.4.3 Tissue Retrieval Results

Since several similarity measures and different feature sets are proposed at both pixel-
level and global-level data, we will determine and evaluate the best combination of the
texture feature representation and corresponding similarity measure for retrieval of
medical images containing specific anatomical regions. The best result for pixel-level
data approaches would also be compared with the best result from global-level data.

To evaluate the significance of the retrieval results, all the 344 images were used
as query images. All 11 combinations of feature sets and similarity measures at both
levels gave an overall precision over 80% for the number (k) of most similar images
retrieved equal to 6 (Table 25.3).

At the global level, there was not much difference in the overall accuracy among
the three similarity metrics considered, but the Minkowski and Euclidean distance
performed better for liver and spleen than the chi-square statistics metric. At the pixel
level, the retrieval precision was, in general, higher for the systems that used binned-
histogram data together with the Cramer–von Mises, Jeffrey–Divergence, and the
Kolmogorov–Smirnov metrics. The combination of the binned-histogram feature set
and the Jeffrey-divergence metric reached a value of 91.57%, making this approach to

Table 25.3. Precision at the global and local levels for the entire image database; the overall

performance is the weighted average of the retrieval performance by organ (each image was a

query image).

Global-level vector-based precision

Backbone Heart Kidney Liver Spleen OVERALL

Euclid distance 100.0% 90.4% 93.8% 67.8% 62.1% 87.7%

Chi-square statistics 100.0% 90.7% 93.8% 62.9% 57.5% 86.4%

Minkowski 1 distance 100.0% 90.1% 92.9% 69.0% 62.5% 87.8%

Pixel-level vector-based precision

Euclid distance 100.0% 76.0% 85.8% 59.8% 46.7% 81.2%

Chi-square statistics 100.0% 81.1% 87.7% 60.1% 47.5% 82.4%

Minkowski 1 distance 100.0% 74.4% 85.2% 59.5% 48.8% 81.0%

Weighted mean variance 100.0% 87.2% 91.7% 58.9% 53.8% 84.5%

Pixel-level binned histogram-based precision

Cramer/von Mises 100.0% 88.8% 83.6% 64.1% 51.3% 84.0%

Jeffrey-Divergence 100.0% 91.7% 96.0% 77.9% 75.8% 91.6%

Kolmogorov-Smirnov Distance 100.0% 89.1% 89.8% 69.8% 60.0% 87.0%

Pixel-level signature-based precision

Hausdorff 10% vs. 20% cs 100.0% 81.1% 86.4% 57.8% 42.1% 81.2%
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outperform all the other approaches. Pure comparison of the similarity metrics with
respect to the granularity of the feature data can be made only between the metrics
that were applied to the data represented in the same feature space. Comparing the
Euclidean, chi-square, and the Minkowski metrics in [5], the global features overall
perform better by about 6%. Even though the overall performance is better when using
global-level descriptors for these three metrics, one of the systems considered in the
pixel-level approaches outperforms the global-level approaches by up to as much as
10% to 20% for liver and spleen.

Furthermore, comparing the best feature set and similarity metric combination per
organ at the pixel level, we notice that the binned-histogram feature set with Jeffrey
divergence performs the best with respect to each individual organ: backbone (100%),
heart (89.7%), kidneys (96%), liver (77.87%), and spleen (75.83%).

Since the best retrieval results were obtained at the pixel level and for the binned
histogram feature set and the Jeffrey–Divergence metric, we evaluated further the
performance of this system when more than six similar retrieved images were retrieved
for this combination of feature representation and similarity metric. By increasing k,
the number of the most similar images retrieved, from 6 to 156 (increments of 10)
and calculating the values for precision and recall, we noticed that even for more than
six similar images (up to 26 most similar images) the retrieval precision continues to
be above 87.79% (the best value obtained for global retrieval and k = 6). Evaluating
the overall recall, its value increased from 8% for k = 6 to above 80% for k = 156.

25.5 Conclusions

In conclusion, this chapter presents the potential contributions of data mining and
image processing to the field of radiology; in particular, we discussed how computer-
aided diagnosis (CAD) systems can play a major and important role in early detection,
diagnosis, and treatment planning.

While there has been considerable work done for classification of abnormal tissues
within different organs (such as liver, lung, heart, and brain), to our best knowledge,
there is little research in regards to interorgan classification. Our preliminary results for
classification and segmentation show that using only 10 texture descriptors calculated
from Hounsfield unit data, it is possible to automatically segment and classify regions
of interest representing different organs or tissues in CT images. Furthermore, the
results lead us to the conclusion that the incorporation of some other texture models
into our proposed approach will increase the performance of the classifier, and will
also extend the classification and segmentation functionality to other organs.

The research work on retrieval presents an extensive evaluation of different co-
occurrence texture feature representations and similarity metrics for content-based
medical image retrieval. Our experimental results show that the presented approaches
are promising to offer new possibilities for content-based access to medical images;
new intelligent systems could be created that will be able to choose image features
relevant to a specific clinical task, analyze the data, and automatically choose the best
similarity metric for corresponding data representation.
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Even though there are many challenges that need to be addressed before the
approaches presented in this chapter will become a true partner to the diagnostic
radiologists, the proposed approaches can be considered as an initial step along these
efforts and can open other avenues of exploration for other researchers in the field.
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